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FOREWORD

This report contains an engineering and programming
description - for the revised April/8s version of the
Two-Dimensional Kinetic Thrust Chamber Analysis Computer
Program, TDK, developed.by Software and Engineering Associates,
Inc., Carson City, Nevada. Revision of the TDK Computer Program
was performed under Contract Numbers NAS8-34974, NAS8-35046, and
NAS8-35931., The work performed was monitored by Mr. Klaus
Gross and Mr. A. Krebsbach of the NASA George C. Marshall Space
Flight Center, Huntsville, Alabama.

The TDK Computer Program consists of the following

computational modules:

MCM Master Control Module

ODE One-Dimensional Equilibrium Nozzle Analysis
Module

ODK One-Dimensional Kinetic Nozzle Analysis
Module

TRANS Transonic Analysis Module

MOC Method of Characteristics Module for

Equilibrium, Kinetic, or Frozen Nozzle Flow

BLM Boundary Layer Module

The reference procedure which utilizes the above computer
programs 1s given in the JANNAF Rocket Engine Performance
Prediction and Calculation Manual, CPIA246, Reference 1.
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1. INTRODUCTION

The Two-Dimensional Kinetics (TDK) computer program is a
primary tool in applying the JANNAF liquid rocket thrust chamber
performance prediction methodology.1 This computer program and
the performance prediction methodology were originally developed
under the auspices of the Performance Standardization
Subcommittee (PSS) of the JANNAF. The goal of the PSS is the
development of a methodology that includes all aspects of rocket
engine performance from analytical calculation to test
measurements, that is physically accurate and consistent, and

that serves as an industry and government reference.

Recent interest in rocket engines that operate at high
expansion ratio, such as most Orbit Transfer Vehicle {(0TV)
engine designs, has required an extension of the analytical
methods used by the TDK computer program. Thus, the version of
TDK that is described in this manual is 1in many respects
different from the 1973 version of the program that is described
in Reference 2. Although much material from the 1973 document
is included in this manual, other material is entirely new.

This new material reflects the new capabilities of the TDK

computer program, the most important of which are described

below.

Ref. 2: Nickerson, G. R., Coats, D. E., and Bartz, J. L., "The
Two-Dimensional Kinetic (TDK) Reference Computer
Program", Engineering and Programming Manual,
Ultrasystems, Inc., December 1973, prepared for

Contract No. NAS9-12652, NASA JSC.
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a)

b)

c)

d)

e)

£)

850105

A Boundaﬁy Layer Module (BLM) has been included within
the TDK program. The BLM can be used to automatically
calculate the wall boundary layer after execution of
the Method of Characteristics (MOC). The resulting
wall displacement and the heat transferred through the
wall are computed. The ODE-ODK-TRANS-MOC series of
calculations can then be automatically repeated with
the appropriate parameters (wall contour and propellant
enthalpy) updated. This feature allows the "rigorous
analytical ©procedure” of the JANNAF rocket engine
performance prediction methodology1 to be carried out
with a single computer run for a regeneratively cooled

engine.

The ODE module of TDK has been modified so that it will
compute transport properties for the nozzle exhaust

composition. This information is required by the BLM.

The ODE module of TDK has been modified so that it will
provide tables of gas properties versus temperature for
the stream tube mixture ratio adjacent to the nozzle

wall, This information is required by the BLM,

New nozzle wall geometry options have been added to the

program.

The ODK and MOC modules can contain condensed phases
that are in thermal and velocity equilibrium with the

gas.

The transonic flow module (TRANS) has been modified to

analyze flow with variable mixture ratio.



g) The MOC module has been rewritten to allow for the
presence of a shock wave in the flow. The shock can be
elther attached to the nozzle wall, or induced by the
nozzle wall curvature. Regular reflections from the
nozzle axis and the nozzle wall can be computed. The
shock option can be used for flows with gas properties

along streamlines that are either:
1) constant,

2) chemically frozen (i.e., fixed composition, but

properties varying with temperature), or
3) governed by finite rate kinetics.

h) The thermodynamic data and kinetic rate data (see

Appendix A) for the program have been updated.

The TDK Computer Program is designed for engineering use and
is specified and programmed in a straight forward manner to
facilitate its application. The FORTRAN IV programming language
has been used in an attempt to make the computer program as
machine independent as possible. A complete engineering and
programming description of the TDK Computer Program 1s contained

in this report.

Section 2 of this report contains a description of the

methods of analysis used in the computer program.
Section 3 contains a description of the numerical rethods

used to integrate the fluid dynamic and chemical relecation

equations in the computer program.

850105 123



Section 4 contains a description of the program structure.

Section 5 contains a detailed engineering and programming

description of the program subroutines.

Section 6 contains a program wuser's manual describing the
use of the computer program with an explanation of the program
input and output.

Section 7 contains input and output for a sample case using

the TDK option of the program.

Section 8 contains a discussion of program usage and error

diagnostics.

850105



2. ANALYSIS

The TDK Computer Program has been written for the purpose of
evaluating two~dimensional effects on the performance of liquid
propellant exhaust nozzles. An important feature of the TDK

program is 1its ability to <consider nonequilibrium chemical

processes. The basic method of analysis used by TDK is the
method of characteristics, The program constructs a
finite-difference mesh by tracing gas Streamlines and
characteristic surfaces, The mesh points are located at the

intersections of these surfaces. Systems of large size can be
considered by the program as 1is indicated by Table 2-1 which

gives maximum dimensions for the program.

The method of characteristics calculation is capable of
considering either continuous mixture ratio variation, or flow
striations. Striated regions are separated by slipline

conditions, i.e., adjacent streamlines with matched pressure and

gas streamline angle, but at different mixture ratio,
temperature, etc. Mixing between striated zones, is not
considered. The initial data line required to start the method

of characteristics 1is calculated using a transonic analysis
provided for this purpose. The characteristic equations
governing the fluld dynamic variables are integrated using a
second order (modified Euler) explicit integration method while
the chemical relaxation equations are integrated using a first
order implicit integration method to insure numerical stability

In near equilibrium flows.
In order to start the method of characteristics calculation,

it is necessary to approximate an 1initial data line across the

nozzle throat. This initial data line must be supersonic and

850105 2-1



TABLE 2~1 MAXIMUM DIMENSIONS FOR TDK

Number of defined elements provided 102
Number of possible species per case 4o
Number of species in the Master Thermodynamic Data File 1000
Number of possible reactions 150
Number of possible reactions with implied third body 50
Number of reactants per reaction 10
Number of products per reaction 10
Maximum stoichiometric coefficient total 600
Number of possible third body efficiencies to be considered 2000
Maximum number of streamlines (i.e. mesh points per left 275
running characteristic)

Maximum number of zones (i.e. striations) 50
must be compatible with the mesh construction methods used by

TDK.

data line

information i3 computed by use of the ODK module as described

The calculations performed by TDK to generate this initial

are carried out in two stages. First chemical

in

Section 2.1, Chemical and fluid properties, obtained from this

calculation are retained in the form of tables. The second

stage of

employs

the calculation makes use of this information and

perturbation method to estimate two dimensional

effects in the transonic region of the nozzle throat. Variable

mixture ratio flows and striated flows are treated by means of a

straight forward extension of the procedure described above.

The description given above is shown schematically in Figure

2-la.

The TDK Computer Program is divided into modules as shown

in the figure. The modules are 1illustrated 1in the master flow

chart

presented in Figure 2-1b. For a description of

analysis used by ODE, Reference 3 should be used.

850105
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In Section 2.1 of this report the analysis for the ODK
computer program is given. In Section 2.2 a discussion of the
finite rate chemistry used by both ODK and TDK is presented. In
Section 2.3 the conservation equations governing two dimensional
axisymmetric inviscid flow are presented. In Section 2.4 the
transonic flow method used to construct an initial data line for
the method of characteristics solution is presented. The method
of characteristics relations are presented in Section 2.5. The

boundary layer solution is presented in Section 2.6.

PERFORMANCE PREDICTION METHODOLOGY

The JANNAF thrust chamber performance prediction methodology
is defined in Reference 1. In this methodology the predicted
delivery specific 1impulse for the ‘thrust chamber can be

expressed as:

- .AF /

I BLM MTDK'

n
SPyeliv DER

IS
PrpK*

The factor "DER in the above expression represents the

distributed energy release of the combustion process. The terms

I .
sp , MTDK' , and AFBLM represent the values predicted by

TDK'
TDK for nozzle specific impulse and mass flow, and by the BLM

for boundary layer thrust deficit. The prime denotes that these
quantities have Dbeen corrected using the Prandtl procedure,.
Thus, a second TDK calculation has been made with the nozzle
wall displaced inwards a distance equal to the boundary layer
displacement thickness. Also, in this calculation the heat
picked up by the regen cooling circuits has been returned to the

thrust chamber as increased propellant enthalpy. Care is taken

850105 2-1



in the procedure to assure that a complete energy balance 1is

maintained.

The boundary layer thrust deficit is evaluated by

integrating across the boundary layer at the nozzle exit for
*

momentum thickness, 9 ’ and displacement thickness, § , and

applying the resulcts as follows:

Fgoy = 277, cos a, o, U 05 4

- 2nre cos @, (Pe - PBLM) §

The first term in the above expression represents the
momentum deficit in the boundary layer and includes the effects
of wall skin friction and heat transfer. The second term
represents the pressure force acting on the annular portion of
the nozzle exit plane that is between the real wall and the

invisid edge of the boundary layer. The quantities re y P P

e' e’
and Ue » are boundary layer edge properties obtained from the

second TDK calculation.

850105 2=5



2.1 ANALYSIS FOR THE ¢DK COMPUTER PROGRAM

The One Dimensional Kinetic nozzle analysis computer program (ZDK)
described in this section has been developed ‘fo{ performing reference liquid
propellant thrust chamber performance calculations. The ODK computer program
calculates the inviscid one dimensional equilibrium, frozen and nonequilibrium
nozzle expansion of gaseous propellant exhaust mixtures. The DK program is
also used as a subprogram by TDK. The JDE computer program, which is de-
scribed in Reference 3, is used to perform the equilibrium composition computatlons.
The GDE program computations are based on the assumption that species com~
positions at any pressure and enthalpy point will be distributed such that the
free energy of the system is minimized. Solid and liquid phases can be included
in @DE computations, and to a certain extent in the ZDK and TDK computations.

The ODK one dimensional nonequilibrium calculation is performed be-
ginning at the converging section of the nozzle and ending at an axial station
located beyond the throat plane. In this calculation pressure defined relations
are used to integrate the differential equations for a one dimensional streamtube
untii the flow becomes supersonic. This pressure profiie is obtained by computing
an average value of expansion coefficient based on a chemical equilibrium gas
composition at the nozzle chamber and throat. These parameters are supplied
automatically by ODE. Pressure and its axial derivative are then obtained for the
exact prescribed inlet geometry from the relations for isentropic expansion. Once
the pressure profile has been determined the one dimensional nonequilibrium flow
relations are integrated starting with an equilibrium calculation obtained at the
thrust chamber contraction ratio. The advantage of using the pressure defined
boundary condition is that the differential equations are not singular at Mach one
so that no difficulties are encountered when integrating through the nozzle throat
region. The throat (minimum area) occurs when the product of density and velocity
maximizes and thus determines the mass flux corresponding to the choke flow con-
dition. Using this mass flux, the nozzle area profile can then be determined.
Experience has shown good agreement between this area profile and the original
input geometry. Once supersonic conditions are reached the program automatically
changes over to area defined differential equations.

o
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2.1.1 Conservation Equations for One Dimensional Kinetic Expansions

The conservation equations governing the inviscid one dimensional flow
of reacting gas mixtures have been given by Hirschfelder, Curtiss and Byr*d,“l
Penner 5 and others. The basic assumptions made in the derivation of these

equations are:
o There are no mass or energy losses from the system
o) The gas is inviscid
0 Each component of the gas is a perfect gas

o The internal degrees of freedom (translational, rotational and
vibrational) of each component of the gas are in equilibrium.

The conservation equations are presented here in the form used in the present

analysis.

For each component of the gas the continuity equation is

d . <5
prov (ina) = wy r*a

where the axial coordinate (x) has been normalized with the throat radius. Summing
over all components of the mixture, the overall continuity equation is obtained

d‘ 3) =
T (pVva) =0
Combining the above two equations gives
*
dci wyr

dx pV

The momentum equation is

<P
dx

I"O
\]



The energy equation is

1 2 _
h+'2— \) —Hc
where
h = c.h
j=1 11
and
T
h1=_[‘o cpid'l.'+hio

For each component of the gas, the equation of state is
P1 = piRiT ~

Summing over all components of the mixture, the overall equation of state
is obtained

P= pRT
where

R=2 ¢

R
=1 1

Since the expansion through a nozzle can be specified either by the expansion
process or by the nozzle geometry, two forms of the above equations are of interest,

If the expansion process is specified and the pressure is known as a
function of distance through the nozzle, the above equations become
*
dci _ w,r
dx oV

2-8
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while if the nozzle geometry is specified, the above equations become

o«
d(:i ) w;T
dx =~ pV

av _ .t_s!.a:_A]_;!_
dx a dx M

&le
]
—
Y] o
D-'ﬁ.
b ]
>
—J
'\]'z
+
>
A



P = pRT

where
I 4 RT-X____l. h
* i“;r[iz::xm‘ : Y iz:lull
B = L —— x* w
=y PV & i
i=1
M = —
vyRT
. C
Y e TR
and

cC_ = C ..
P i);lc‘ pl

The first set of equations is completely specified at the sonic point
while the second set of equations is singular. Thus, if the expansion through
the nozzle is Specified by the pressure distribution, the equations governing the
expansion can be directly integrated through the sonic point without mathematical
difficulty.



The expansion from the chamber through the sonic point is specified by the
pressure distribution in the present program in order to eliminate numerical
difficulties at the sonic point. In the expansion section downstream of the
sonic point, however, the area variation is specified and the second set of
equations is integrated through the supersonic expansion section.

In specifying the nozzle pressure distribution from the chamber through
the sonic point, rather than the known area distribution, a question naturally
arises regarding how accurately the calculation represents the flow through a
specified nozzle geometry. It has been shown by Bray 6 and others that the
pressure distribution through a nozzle is essentially identical with the equili-
brium pressure distribution up to the freeze point which generally occurs down-
stream of the throat (or sonic point). Thus, the difference in the expansion and
predicted performance caused by utilizing the equilibrium pressure distribution
rather than the nozzle geometry to specify the expansion from the chamber to the
sonic point is negligible. If a case does arise in which the equilibrium pressure
distribution is not an adequate representation of the expansion, the pressure

distribution can be iterated to obtain the correct pressure distribution. Experience

In the above analysis the chemistry is brought into the conservation
equations'through the net species production rates, W . The analysis pertaining
to the chemistry is given in the following section.



2.2 CHEMISTRY

The method by which the net species production rate, Z"’i' required by the
preceeding analysis is determined is described below.

A chemical reaction can be written in terms of its stoichiometric

coefficients (u“ and v 1]) as

121 gt

M, 2Z p!, M
i i=1 ij i
where 1711 represents the lth chemical species name and } represents the

jth reaction.

Given a system of chemical reactions, the net species production

rate w, for each species (component) is calculated from
= "> Lgl g3 (y' ) X
it U A= vy Vi T

where

= o i - ~ _
X =S AT ky M, (2.2-1)

The reaction rate, kj' is from right to left (reverse) in the above

Yy Aj "'ij

equation and isrepresented by the Arrhenius form

-0, (-bj/m')
k, =a[T e
j ]
where
a j is the pre-exponential coefficient
nj is the temperature dependence of the
pre-exponential factor
b {s the activation energy

The term M. is provided so that the reaction rate can be modified for reactions

tnvolving a third body, i.e.

M, = 21 my CA for reactions requiring a third body
=1 1

M, =1 for all other reactions

)

where the constants m, , are specified, and

c, = ci/Mwi

i



The integer, A j* is determined for a given reaction from the stoichometric

coefficients

A, = -
1 1§1 (Vg = vy

The equilibriurh constant, Kj, is*

- A

where

AF=2 f vy, -2 f v
=1 170 5 1Y
Reactions involving a third body have a distinct reaction rate for

each particular third body, so that the net production rate should be calculated
from
Ve, }] v,.
X = ¥ |k w5 U.ple ¥z x (2.2-2)
R S i=1 y

rather than Equation (2.2-1). Benson and Fueno 7 have shown theoretically that
the temperature depcndance of recom
of the third body. Available experimental recombination rate data also indicates
that the temperature dependence of recombination rates is independent of the
third body within the experimental accuracy of the measurements. Assuming that
the temperature dependence of recombination rates is independent of the third

th species (third body) can be

Lination rates is appioximately independent

body, ithe recombination rate associated with the k

represented as

-n, (-bj/RT)
kkj = akTT e (2.2-3)

where only the constant a, . is different for different species (third bodies). From

kj
Equation (2.2-2) it can be shown that

[

[ v » -n, -b./RT

X, = |K, n ¢ ij_,:j“_ c. 4 a.c T Je )

N R =1+ = WUk
r ) 9 .

’ ~ v . a,. -n, =b./RT
‘ i —
s |K, 'Eiij-pxj:r ‘c_ij _ﬂci :\.k.T je )

RN =1 b LT %K ]

*
K. is also the ratio of the forward toreverse reaction rates.

)

o
!
fus)
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Thus the recombination rates associated with each third body can be considered

as In Equation (2.2-1) by calculating the general third body term (Mj) as

My = &1 m 5

3y
where mj i is the ratio ?J-— of the recombination rate associated with the
’ kj

i"? species (third body) to the recombination rate associated with the k'! species
(third body) which is the reference species (third body) whose rate in the form
of Equation (2.2-3) is specified in the program input.

th

Chemical kinetic rate data is dlscussed in Appendix A.



2.3 CONSERVATION EQUATIONS FOR TWO DIMENSIONAL KINETIC EXPANSIONS

The conservation equations governing the axisymmetric inviscid flow

. Y
of reacting gas mixtures have been given by Hirschfelder,Curtiss and Bird

5

Penner - and others. The basic assumptions made in the derivation of these

equations are:
o There are no mass or energy losses from the system
o The gas is inviscid
o Each component of the gas is a perfect gas
o The internal degrees of freedom (translational, rotational,

and vibrational) of each component of the gas are in equili-
brium.

The conservation equations are presented here in the form used in the present
analysis.

For each component of the gas, the continuity equation is

(piu) +;l-(rpiv) = w,r® (2.3-1)
x r

where the coordinates (r,x) have been normalized with the throat radius.
Summing over all components of the mixture, the overall continuity equa-

tion is obtained

(‘.m)x + %{rpv)r =0 {2.3-2)

Combining the above two equations gives

w.r* )
u(ci) +v(ci) = ; (2.3-3)
xX o

The momentum equations are

1]
o

p(uux + vur) + Px (2.3-4)

(2.3-5)

"
o

,:o(uvx + vvr) + Pr

2-1F



The energy equation is

1, 2 2
h+-2-(u + v )=Hc (2.3-6)
where
h= igl ¢;h, (2.3-7)
and
T
hi =j; Cpi aT + hio (2.3-8)

For each component of the gas, the equation of state is

Summing over all components of the mixture, the overall equation of state
is obtained
P= pR}‘ (2.3-10)

where
R=F <R (2.3-11)



2.4 INITIAL LINE CONSTRUCTION

The solution to equations 2.3-1 through 2.3-11 becomes highly
complex In the subsonic-transonic domain. Because of the elliptic
character of the partial differential equations for the case of steady-state,
choked flow in a rocket nozzle, the known boundary conditlons are improperly
set. Thus, it is necessary to construct by approximate means an Inltlal data
line sultable for the calculation by method of characteristics of the flow
field in the supersonic domaln. The method used by the TDK Computer
Program in constructing this initial line is summarized below.

2.4.1 Uniform Expansions

For the purpose of calculating a transonic solutlon In the reglon
of the nozzle throat, an average expansion coefficient is determined. To
accomplish this, a one-dimensional calculation is performed from the chamber
to throat for the propellant system and nozzle geometry specified using the
ODK subprogram.

Tables of flow properties (p, V, T,ci) are constructed as a
function of pressure. These tables span the nozzle throat region. An average
expansion coefficlent Is computed using these tables as*

_ ln(Pz/Pl)

y—

ln(oz/ol)

where the subscripts 1 and ¢ refer to the first and last table entrles, res-
pectively.

Using the above expansion coefficient and the throat wall geometry,
the transonic flow fleld is constructed using the method of Sauer In a some-
what modified form as described in section 2.4.3. The initial line calculated
by this method s an approximation to the constant pressure surface emanating
from the throat minimum point. Along a constant property line it is a reasonable
assumption that a constant value for expansion coefficient can be used.

_ dgnP . 4n Pz-Jl,nP1 ) zn(PL/Pl)
Yy = dstngp n pe-!,n o1 l,nlp’/plj

iy

[ L



The TDK transonic analysis computes the pressure value at the
throat minimum point, the location of the corresponding isobar, and the variation
of streamline flow angle along this isobar. This particular surface has been
chosen because it is advantageous from the standpoint of the assumptions made
in the transonic analysis. It satisfies boundéry conditions exactly at the wall,
as well as at the axis and will yield a constant Mach number which is usually
slightly greater than unity. If supersonic, this surface will be upstream of its
characteristics, both left and right running. Should this surface be subsonic
due to nonequilibrium effects, a provision exists for displacing the initial line
downstream. Once the pressure surface described above has been calculated,
all of the other gas dynamic properties are obtained by interpolation from the
tables constructed by ODK.

2.4.2 Zoned Expansions

Many rocket thrust chambers are designed to operate with a cool
(fuel rich) barrier zone near the wall to help shield the wall from excessive
heat transfer. In addition thrusi chamber and injector design usually result
in a mal-distribution of the fuel/oxidizer ratio so that the resultant flow is
striated into numerous zones of varying mixture ratio. In order to obtain an
estimate of the effect of these phenomena on engine performance, a zoned
expansion capability is included in the TDK computer program. Each zone is
assumed to have a distinct mixture ratio and to contain a specified fraction
of the total nozzle mass flow rate. The zones are assumed to be axially
symmetric and are distributed radially from the nozzle axis to the nozzle wall.

The procedure used in constructing an initial line for zoned expansions
is analogous to that described above for uniform expansions. For the purpose
of calculating a transonic solution in the region of the nozzle throat, an average
expansion coefficient is determined for each zone. To accomplish this, a
one dimensional calculation is performed from the chamber to throat for the
propellant system and nozzle geometry specified using the ODK Computer Program.
One such calculation is performed for each zone (i.e. for each mixture ratio).



Tables of flow properties ( p, V, T,ci) are constructed as a function
of pressure for each zone. These tables span the nozzle throat region. An
average expansion coefficient, ;n' is computed for each of N zones using
these tables as

In( Pl /P 1)n

"o = TaTp,7 %)) nEheee N

n

where the subscripts 1 and g refer to the first and last table entries, res-

pectively.

Using the above expansion coefficient vector and the throat wall
geometry, the transonic flow field is constructed using the method described
in section 2.4.3. The initial line calculated by this method is an
approximation to the constant pressure surface emanating from the throat
minimum point. Along this line each zone is separated by a double point
defining the properties on either side of the contact discontinuity.

These points, which have equal pressure and gas streamline angle, become
dividing streamline points in the method of characteristics calculation (see
subroutine DSPT, Section 5). Properties other than pressure and flow angle
are discontinuous across a dividing streamline and these discontinuities may
be large. Within a given zone only the gas streamline angle will vary with
location (r,x) along the start line. Properties other than pressure and flow
angle are obtained by interpolation on pressure from the tables constructed
as described above by use of the ODK subprogram.



2.4.3 Transonic Analysis

The basic assumptions made in carrying out the transonic analysis are
summarized below (see Reference 9 for a more complete discussion):

o} The flow is inviscid and compressible

o The flow is near the sonic speed and directed nearly
along the nozzle axis

o The flow is axially symmetric

o} The flow is divided into annular zones, each of which
is characterized by a single adiabatic expansion
coefficient, vy.

o In the nozzle throat region the flow is dependent only on the
local wall geometry

With the above assumptions equations 2.3-1 through 2.3-11 reduce to

the equations governing the irrotational flow of a perfect gas, t.e.:

av_ _ du_ _
dXx or 0
and
@2 - ud) 2u | gy AU (az—vz) oV 2y =0
X er ar r

The method of analysis used to approximate a transonic solution to these
equations is a small perturbation technique. For a one zone expansion the method
reduces to that given by Sauer.8 The method consists of normalizing the velocity

to the critical speed of sound

=1
i

<?
il

DJ|< ﬂlll:
* *



Perturbation variables u' and v' (both of which are assumed of small
magnitude with respect to unity) are then introduced.

u=1+y

<t

=v

It can be shown that substituting these relations into the governing
equations and retaining only terms through first order gives*

3 v' du' _
ar =0

dx
(y+1) u g: - g:_’. -v/r =0

An exact solution for the above equations can be constructed and is
found to be

=1 - 2 2

U = — +
4 (y +1) Blr +Cllnr+BO+le
1

v (r +1}°B

1

o

.1, . 1
r —- 3, C - —
T3 \'y+1)Bl(,1r(lnr >

1
t o=y +1) BlBor+Cz/r

. ,
+ [-'2_ (')’+ 1) Bfr*"Cl/r]x

where BO' Bl' C1 , and C2 are constant coefficients which must be determined
from boundary conditions. For the case of a nozzle throat with constant radius

of curvature, R, (i.e. a circular arc, see Figure 2-2) these coefficients are
found to be

Bp= - =R

2 3
B, = + <
1 ‘= nr)
Cl =CZ=O

which is the classical solution given by Sauer.8

*A complete derivation of the material presented here is given in Reference 9.
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Nozzle Throat Geometry
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Nearly all exhaust nozzles for engines using liquid propellants are con-
structed with a radius of curvature smaller than appropriate to the small perturbation
methods of analysis. Fortunately a simple modification to the method yields results
which compare favorably both with experimental measurement and with the results
of other analysis when applied to throat geometries such as occur in rocket exhaust
nozzles of practical interest. The basis for this modification is to bound the method
such that the computed pressure proceeds to a physically reasonable limit for a
zero radius of curvature throat. The bound is applied at the wall boundary con-
dition and is chosen such that the ratio of préssure to sonic pressure be zero at
this limit. This assumption leads to the result that

P/P*,throat =1-(y/4) /(R+y/4)
rather than the usual result

1-(y/4) /R

throat

P/P*,
which is divergent for R = 0. Results obtained from the transonic analysis (see

Reiference 8) have been found to compare favorably to both available experimental

data and to the results of other, more complex, analytical methods.
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To apply the small perturbation analysis to striated flow the analysis
assumes that the nozzle flow is divided into N axially symmetric zones, each
of which is characterized by a constant (i.e. average) specific heat ratio, These
N zones are bounded by N-1 sliplines, i.e. dividing streamlines; such that pressure
and streamline angle are matched but other properties such as velocity, temperature,
and Mach number are discontinuous. A first order method is used to determine the
radial coordinate location, Yn' of each slipline. Once these locations are known,
boundary conditions are applied at the wall, axis, and each slipline to complete
the solution.

The indices n =0, 1, . . . N identifying each zone and slipline boundary
are taken numbered from nozzle axis to wall as shown in Figure 2-3. The

sliplines are located at

Yn ;n=0., 1, ... ., N

The total mass flow rate for the nozzle is

M ~

and for each zone the partial mass flow rate is

. _;_______il__—-——— =
n__mass flow.rat zone n ,n=1,2,...N
M
so that
NI
mn=1=m1+m2fo [} o+mn
n=l



zone boundary slipline locations

index index
N & —— Yy=1 wall
N-1
: n+l Yn+l
+
n+l n Yn
n-1
< 3 Y3
3
2 Y
’ 2
1 0 —_— Yy =0 axls
Figure  2-3 Nomenclature for the Numbering of Zones
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Applying the continuity relation it can be shown that to first order
the szx are solutions to the tridiagonal system shown below.

e 1 P 1 -
(1+A.K,) -1 <Yf 01
1™ '
AK,) -1 v
-AZKZ , (1 + 2™2 ' 2 0
y2 1
-A 1K1 B +Ay_1KN-1) N-1
i i | 1 L
where .
kK, =2t n=1,2,...N-L
mn
p* a*
A = —2— n=1,2,...N-l
p* a*
n+l n+l

Once the slipline locations Y ne are known it is necessary to apply boundary
conditions sufficient to determine the constant coefficlents Bon, Bln, Cln, Czn.
The conditions applied are:
at the axis;

the radial velocity component is zero.

at the sliplines;

the gas pressure and streamline angle match through first order.



at the wall;

the gas streamline follows the wall streamline through first order.
These conditions require that the following relations be satisfied by the constant
coefficients:

at the axis (for n-1):

C, =C, =0

1 1
at the sliplines (for n=2, . . ., N=1);

2

1 2.3 3 -1 )
16 (_'Vn+l) Bl Yn + Z (7n+l) L:'l cl Yn (.lnYn - 7)
n : n n
"’-zl‘(ynfl)Bl B, Y +C, Y ! =
: : n n® M

1 2.3 . 3 1 1
—_ (y +1)°B Y + = (v +1)B C Y (lnY - =)
16 n+l 'ln+l n 2 ''ntl ln-l—l ln+l n n 2

1

n+tl ‘n+1 ® n+tl1 °
and
_;(Yn"'l) Bf Y +C Y-1=_L(7 +l)82 Y +C Y"'l
n " In'n 2 'ntl NSE e @
and
1, 2 .2 |
* - — .
p¥ )l Y [4(Yn+1) By Y, +C, InY +B, ]‘ =
: n n n
Par1{ 1 e [L (g +1) Bf Y2+C_;1 InY +B
4 n+l n n+l n 0n+1
and
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at the wall (n = N);

2 3 1
T(7N+l) - = (yy*1) B, C
N 4 N . lN lN

L
+ (v +1) B B +C =0
Z N In On 2y

and

1 2
(yq+1) B +C, =1AR
2 N. 1y .

The above equations form a system of 4N non-linear equations in 4N

unknowns (B0 . B1 . (31 ' C2 ). For given values of R and of the vectors mn
n
A ' Yp and Y the above system of equations can be used to determine the 4N

known coefﬁcients by employing standard numerical technique.

To apply a numerical method (such as the Newton method) to obtain a
solution to the abuve sysiem of equaiious (equites an esiimale {or the solution

vector (B0 . B1 ' G1 ' C ). The TDK program uses the one zone solution to
n
provide a ﬁrst estimate. A good estimate is obtained since if

7n=-yn+l n=1'2' s o oy N-l

the one zone solution satisfies the above system identically. The program also
takes advantage of the banded property of the Jacobian, J, for the above system

-1
i{n using Newton's Method, x (kﬂ) = x(k) - I(k) 'f(k) to obtain solutions.

The method described above has also been bounded so as to give reasonable

answers for nozzle geometries where R is small.
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2.4.4 Transonic Model with Mixture Ratio Variation

The transonic model used by TDK which 1is described in the
preceding section divides the flow into regions of constant
mixture ratio that are separated by sliplines. Each region
contains a specified fraction of the total mass flow. This

method, which is called the striated flow option, has been
modified 8o that flows with continuous mixture ratio variation

can be analyzed. This variable mixture ratio option 1is

described below.

When the variable mixture ratio option is used, there are no
sliplines in the flow. Instead, the flow mixture ratio ,r, will
vary from the axis (¥=0) to the wall (¥=1) as specified by an
input table of r versus ¥. The Streamline function ,v,
represents the mass flow between the streamline and the axis,
divided by the total nozzle mass flow. An ODK calculation is
done for each entry in the above table. Values along the
initial data line for the MOC are obtained by interpolation in
the ODK results using pressure and radial coordinate position
. as independent variables. The transonic analysis is used
to provide a table of ¥ versus Y. The method used is described

below,

The ODK program constructs tables of flow properties
(p, ¥V, T, and ci) as a function of pressure. These tables span
the nozzle throat region. An average expansion coefficient 1is

computed using these tables as

Y = fn (P,/P )/%n (p,/p )
L 1 L 1
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where the subscripts 1 and & refer to the first and last table
entries, respectively. Values of Y are found from Y and from

input to the transonic analysis

Y = (Y + ¥ y/2 n=1,2,...N

and also

n n n-1
Using these values, the transonic analysis calculates
Yo = 0, Y:’ Yz, ...YN - Ywall'

The above Yn values represent the radial location at which the

input mixture ratios

are located. In this way the input table of r versus ¥ |is

converted to a table of r versus Y.

Next, the transonic analysis i3 wused to compute the
coefficients (Bo . B1 , C1 , C2 ). These are used to compute
n n n n
P(X,Y) and 8 (X,Y) in the transonic region (see Reference 9,
pp.2-20) at points n=0,1...N. Using each of these N + 1 values
of P as an independent variable, the corresponding values for

p,V,T, and ¢ are obtalined by linear interpolation from the

i
corresponding table that was computed by ODK. These tables are
then used to linearly interpolate for P,p,V,8,T, and c1 at each

MOC initial 1ine point using ¥ as the independent variable.
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L}

The program will not function properly if the spacing in the
mixture ratio table, ros is too 1large. The required spacing
depends on the chemcial system. As a rule each entry must
differ no more than 4 or 54 from its adjacent values, depending

on the stoichiometry of the system.

The average engine mixture ratio, Fave! is also calculated:
Ywall Ywall
r - [ Eo an s [ (o) as
ave r+i r+i
o o
Wwhere

r is the mixture ratio at position Y, and

. oy 8in(e-9)
dm pV —.§1n¢ YdY.
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2.5 METHOD OF CHARACTERISTICS FOR KINETIC EXPANSIONS

By standard methods the characteristic relationships for the

conservation equations 2.3-1 through 2.3-11 can be shown to be
(see Volume 2, Section 18-3, Zucrow and Hoffman ).

along streamlines,

% = cot (0 + a) (2.5-1)
ﬂg.’ac[:(A«__’i:‘e)Fcir-dta] (2.5-2)

along left running characteristics, and

dr

L =tan (0 - a) (2.5-3)

$=-G [( - 3in °)H dx - de] | (2.5-4)

along right running characteristics, where




M=
z;;;;{TTZ
C
- P
Y c}>- R

F=cose-sin9c6t(6+a)

Gs=
_sin @ cos a

H = cos Otan(e-ﬁ) -sin 0
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The above form of the characteristic relationships remains determi-
nant when the streamline is horlzént_a_i', ‘when the left running characteris-
tic is vertical, or when the right running characteristic is horizontal. Rarely
(if ever) will the inverse of the three situations occur in nozzle flow field

calculations.

In the analysis above the chemistry is brought into the conservation
equations through the net species production rates, W, - The analysis
pertaining to the chemistry is identical to that used by the ODK program
as presented in Section 2.2.



2.5.1 Method of Characteristics for Frozen Expansions (TDF)

The methods developed in the preceding section for «kinetic

expansions apply with the exception that

wi-O
So that
A =B =0
and
dcildx = 0
Ordinarily the TDF expansion assumes the chemical

composition to be frozen at the equilibrium values at the
chamber contraction ratio (ECRAT). However, initial speclies
compositions and flow conditions can be input. This 1s the
procedure that must be followed when analyzing hydrazine

monopropellant thrusters.
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2.5.2 Method of Characteristics for Equilibrium Expansions
{TIDE)

The supersonic expansion can be analyzed using the method of
characteristics assuming that the process is 1in a state of
shifting chemical equilibrium,. This option 1is called a TDE
analysis. It can be used both for striated flow, and flow with
streamline to streamline mixture ratio variation. Like the TDF
analysis, it 1s very much faster than a TDK analysis. The

methods used by TDE are described below.

The conservation equations to be solved are:

R

continuity: (pu)x + (rpv)r = 0

momentum: p (uux + vur) + Px = 0
P (uvx + vvr) + Pr =0

energy: The energy equation 1is not used explicitly.
Instead, property distributions are provided in
the fofm of tables by a separate equilibrium
computation. The energy equation 1s then
satisfied in an implicit manner as¥*
V= (2h_ - 2h)1/2

o]

where

h = h(P)

is supplied by the chemical equilibrium module, ODE, in the form
of a table.

*Entropy 1s a constant for the expansion so that a function of
only one variable, P, is required.

850106 2-3€



state: The state equation 1is also satisfied in an
implicit manner as

PM
- N
P RT
where T = T(P)
and M =M (P)
w W

are supplied by the chemical equilibrium module, ODE, in the

form of tables.

The above conservation equations have been transformed to
the characteristic form and are solved numerically in the same
manner as by TDK. For convenience tables of specific heat
ratio and Mach number are also tabulated. The complete set of

tables used are:

h Vs log (P) enthalpy

M vs log (P) Mach number

Mw vs log (P) molecular weight

T vs log (P) temperature

Y vs log (P) ratio of specific heats

where each of the above tables has been constructed for each
zone (i.e., region of constant mixture ratio) of the
expansion, The above choice of curve fit form (i.e., vs P or
log P) was made after investigating the graphical form of the
above functions for typical equilibrium expansions. A spline

fit method is used to interpolate in the above tables.
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2.5.3 METHOD OF CHARACTERISTICS FOR__APPROXIMATE __ KINETIC
EXPANSION (TTDK)

The supersonic expansion can be analyzed using the method of
characteristics assuming that the gas properties are defined by
a set of tables prepared by the ODK module. The procedures and
tables are the same as presented 1in the preceding subsection
describing TDE expansions, except that ODK is used to prepare
the tables, not ODE.

An expression for the kinetic variable, A, i3 also required.

It is found as (see the third equation in Section 2.5):

1 dpP 1 dp

Y5 ax ~ 5 ax ) °°® ®

where dP/dX and dp/dX are found by numerical differencing.

A = (

The kinetic variable, B, is not required, since the gas
temperature is found as a tabular function of the logarithm of

the pressure,

A significant advantage of this option is that it gives an
order of magnitude reduction in computer time for a given case.
Although exact results can bDe obtained in the frozen and
equilibrium 1limits, error can be introduced when the expansion

is in chemical nonequilibrium,

2.5.4 SUPERSONIC FLOW WITH SHOCK WAVES

——— e e et e e e it A S ) P oD

For the case of continuous variation (or no variation) in
mixture ratio, the TDK computer program can calculate the
effects of a single shock wave that is caused by the nozzle
wall, The shock can either be attached to the wall, or induced
by the wall. The latter case is the more difficult to treat.
The program logic utilizes a series six of point calculation
procedures to locate and compute the shock. These procedures

are illustrated in Figures 2-4a through f. The flow direction
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Fig. 2-ba:

Right-Running Shock Point

®ig. 2-Ub: Shock Reflection Point at the Axis

Fig. 2-Uc:Left-Running Shock.Point at the Axis

Fig. 2-U4d: Ieft-Running Shock Point

wall
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Fig. 2-le: Shock Reflection Point at the Wall Fig. 2-4f: klght-Running:
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is left to right with streamlines shown as double 1lines. As
shown in Fig. 2-4%a the shock 1is 1initiated by a crossing of
right-running characteristics. A shock point, labeled 3a
(front) and 3b (back) 1is computed by iteration of the
streamline, characteristic, and shock relations. When
completed, the point 1location and the front and back side
properties satisfy all of these relations. This right running
shock i1s traced to the flow axis and reflected as a left running
shock. The procedure for calculating the reflection is shown in
Fig. 2-4b. 1If at any point in the shock tracing it 1is found
that regular reflection is not possible, then a right regular
cylinder of radius, rc. is 1inserted centered along the flow
axis. The shock is reflected from this cylinder, which s
located so that regular reflection is still possible. In this
way Mach shocks are removed from the flow. The first point off
the axis (or cylinder) behind the shock reflection is calculated
by the special procedure shown in Fig. 2-tlc. Next, the shock 1is
traced as a left running shock using the point calculation
procedure shown in Fig. 2-4d. This procedure is the inverse of
the right running shock point procedure shown in Fig. 2-ha.
When the shock reaches the wall, it is reflected using the
procedure shown in Fig. 2-le. A special point calculation
procedure 1is then required for the first point behind this
reflection as shown in Fig. 2-4f, The resultant right running
shock is then traced as before, etc. Thus, multiple reflections
are allowed from the axis and the wall. In general the shock
strengthens as it travels towards the axis (right running), and
weakens as it travels away from the axis and towards the wall

(left running).

The shock option 1is not applicable to the TDE and TTDK

options,
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2.6 THE BOUNDARY LAYER MODULE (BLM)

The purpose of the Boundary Layer Module (BLM) 1s to provide
a method for computing compressible laminar and turbulent wall
boundary layers in axisymmetric nozzles. The BLM can also be
used to calculate two-dimensional and axlisymmetric external
flows. The method utilizes an efficlient two-point finite
difference method developed by Keller and Cebeci11. Turbulence
modeling is achleved through the use of Cebeci-Smith
eddy-viscosity for-mulation12 which has been tested for a large

class of flows with various boundary conditions.

In this section the method is described and the relavant
equations, turbulence model, fluid properties and solution
procedure are presented. Description of the numerical procedure
is not presented, since it has already been described in several

sources, for example Reference 13.

The computer program on which the BLM is based was developed

for SEA, Inc. by CBC Enterprises, Inc.

Ref. 11 Keller, H. B., and Cebecli, T.: Accurate Numerical
Methods for Boundary Layer Flows, Pt. 2,
Two-Dimensional Turbulent Flows. AIAA J., 10, 1972,
pg. 1193,

Ref. 12 Cebeci, T., and Smith, A. M. O.: Analysis of
Turbulent Boundary Layers, Academic Press, N.Y.,
1974,

Ref. 13 Bradshaw, P., Cebeci, T., and Whitelaw, J. H.:

Engineering Calculation Methods for Turbulent Flows.
Academic Press, London, 1981.
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2.6.1 Boundary-Layer Equations

For a compressible boundary-layer flow in a symmetric nozzle, the gov-
erning equations are well known and can be written as '

Continuity
9 k 3 =Ky _ -
X (pur™) +-§y-(pvr )=0 : (2.6-1)
Momentum
ué_'l+—au= u due+] E—[rk( U _ v (2.6-2
PUSX T PV 3y " Pe'e dx X3y Hay - °P 16-2)
Energy
aH , —3H _ 1 2 Kru 9H 1 Ju v _

where k denotes the flow index which is zero for a two-dimensional flow and is
unity for an axisymmetric flow, and

pV = pV + o'V

r=r, -y coso

The boundary conditions for Eqs. (7-1) to (7-3) are

at y =0, u=0, V= vw(x),

T= Tw(x) or &w(x) (heat transfer specified) (2.6-4a)

at y=35s, u=ug, H= He (2.6-4b)
The above equations require initial conditions and a turbulence model for
Reynolds shear stress and heat flux terms, -ou'v' and -oH'V', respec-

tively. Here we use the concepts of eddy viscosity and turbulent Prandt]
number and define

p=lip
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We also use transformed variables to provide the initial conditions for a
stagnation point flow and to reduce the sensitivity of the solutions to the
Ax-spacing. They are defined by

d = (E242k dx (2.6-6a)
ue 1/2 rk
dn = ( ) p([—de (2.6-6b)

Pekeb

We also use a dimensionliess stream function f(E,n) defined by

p = (uepeuei)15 L¥¢(g,n) ' (2.6-7)
where
k k
pur =§¥ , vk = (pv),ro - g% (2.6-8)

With these transformations and with the definition of the relations given by
Eqs (2.6-6 to 8) . it can be shown that the momentum and energy equations
can be written as

" ' " ] 2 L] ] af' n af

(bf") + my ff" + mz[c - (f)°] - myf" =g (f T f 534 (2.6-9)
[} ! 1en ! ] ] ] B 1 3f

(eg') + (df'f") + myfg' - myg' = (f' 52 - g' 35) (2.6-10)

Here primes denote differentiation with respect to n and
' = = ) . 6-
f' = u/u,, g = H/H, (2.6-11)

The parameters b,e,d denote parameters defined by

b= (1+ehichl - 12, e = Fr (14 ep p 00 - £ (2.6-12)

cu 1 2k
d"—n'e—“--p?)“-t)
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PaHa p

The parameters below denote dimensfionless pressure gradients

1+ mz +m, du
= = g e = -—E—— d bd
m'| —'2_——' ’ “‘2 i‘;’ E y m4 peue a’g (Oeue) (2.6-13)

and m3 denotes dimensionless mass transfer parameter

¥l 172 Lk

my = RO Re - (2.6-14)

The boundary conditions given by (2.6-4) can be written in the following
form |

at n = 0’ f = f' = 0. g = gw(z) given
or
g',(8) = given (2.6-15a)
at N = Ng» f' =1, g =1 (2.6-15b)

Note that the wall mass transfer quantity (pV)w does not appear in the
above boundary conditions, instead it appears in the differential equations
through m,. This is a useful convenient form when dealing with mass trans-
fer (suction or blowing) problems.

2.6.2 Turbulence Model

Here we use the eddy-viscosity formulation due to Cebeci and Smith to
model the Reynolds shear stress term. We assume a constant turbulent Prandt}
number and take it equal to 0.9.

According to the Cebeci and Smith eddy-viscosity formulation, the dimen-
sionless eddy-viscosity e; is defined by two separate formulas: in the
inner region of the boundary layer, e; is defined by a modified mixing-
length expression and in the outer region by an expression based on the veloc-
ity defect. This formulation is defined by the following expressions:
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L™ su .
. v 3y Yir Y<Y. ,imner

et s (2.6-16)

-]

0.9168 [ u
0

e - U)ldy Y Yy >y, ,outer

Here Ye is obtained from the continuity of eddy-viscosity expression. The
definition of L 1is:

L = 0.4y[1 - exp(-y/A)] (2.6-17)
where
1/2
1/2v -1 Tw
A = 26(P- = (¥
2 (pw) N—-UT UT (pw)
2 Pa, 2p*
N® =B (5) B_[1 . expm a._- vo)l + exp (11.8 ——-v " (2.6-18)
He Py v
W
p veue_d.l.‘_. v+=llr. =Ee_. l“._( e) -(:c(:2
woou % Ve | He Py W

When there is no mass transfer,

2 . Hy Pe 2 3+
N 1-11.8 ﬁ;'(E;) p 1 -11. 8C c.p

The parameter vy is an intermittency term defined by

1
Y = (2.6-19a)

1+ 5.5(y/s)°

and Yip is a parameter which accounts for the transitional region which exists
between a laminar and turbulent flow. At high Reynolds number flows, though
the transition region is small and Y, has negligible effect on the results,
this expression is still useful because it avoids a jump from laminar to tur-
bulent flow calculations by allowing em to change gradually. It is given by:

k X 4 X d
Yep = 1 - exp[—Gro(xtr)(xI ;EJ (XI ai)] (2.6-19b)
tr o tr

where G is a spot-formation-rate parameter
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1021 113, 2 n-1.34
G_* (3/C1)(ue/ve)R.€tr

1.92
¢y = 60 + 4°86Me

In terms of transformed variables, the eddy-viscosity formulas become:

Q-If“ 0« n < nc
e; = e ¢ (2.6-20)
ool J (1 - f'Yn| n.sn<n
2 0 (1 - t)k ot . e
Here
. 0.16 L \k k Me 51/2,2 2
P '?z- ('Fo—) (1 -¢) T RE 11[1 - exp(-y/A)]wtr
. 0.0168 Fe L \k .1/2
2 e o ) Ry
(2.6-21)
N -3/2 L \k/2 ¢,/ 1/4 1/2 n
- - L W " = c
+ Uq 3 m, r, 2k Ug - X
PT = () KE (= u_ =77 .A:wfwcw(rolL)
T RE

2-46



2.6.3 Fluld Properties

Values of specific heat at constant pressure, Cp, and ratio
of specific heats, Y, static enthalpy,h , and the gas constant
R, are required by BLM. These properties are evaluated along
the wall streamline as a function of temperature using the ODE
module. The tables are prepared using a series of (T,S)
equilibrium calculations, where T varies from 600°R to 7000°R at
200°R increments, The chamber entropy value is used for S.
Values at 100°R are then extrapolated and added to the table.
The table 1is printed with the BLM output. An example of this
output is presented in Figure‘z—S.

Since the ODE module did not contain a (T,S) option, it was
added using the following procedure. Using known values of Pa’
Ta’ and Ya' and the %%gen value of temperature, T, a first
estimate for pressure P was found as

Ya/(Ya-1)

(1)
P = P, (T/Ta).

The (T,P) option of ODE is used to obtain S(i) as a function of
P(i). The procedure 1is iterated using the secant method
(subroutine ITER plus a driver) to find p(1) such that

(1)
|(s**?-s /s, |« 5 E-5

where Sc is the chamber entropy. The procedure is repeated for
each temperature in these tables. The procedure is internal to
the program and not callable through the ODE input.

If the chemical system contains a condensed phase, then

equilibrium solutions made during phase change can yield values
for y that are unacceptable to BLM, e.g., values of Y < 1.
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Since condensation 1is an isothermal process, using (T,S)
solutions avoid this problem. It also avoids the "temperature
out of range" problem that can occur had other, existing options
been used.

The fluid properties shown in Fig. 2-5 are h,u, «, Cp,Y ,
and R versus TOR. - The values of u and « are prepared as
described in Section ?.GJL The values for h, Cp,y » and R are
prepared as described above, 1i.e., they are equilibrium

properties including condensed phases (no gas particle lag).

The gas constant,R, 1is the universal gas constant divided by the
molecular weight of the equilibrium mixture.

If the invisid core flow is frozen, it is more appropriate to use gas
properties prepared using a frozen expansion of the chemical species. The
program will prepare frdzen tables that are analogous to the equilibrium
tables described above when the TDF option is used, or if requested.
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2.6.4 Near Wall Gas Transport Properties.

Values of gas viscosity, u , gas conductivity, « , Prandtl
number, Pr, are required by BLM. These transport properties are
evaluated along the wall stream%ine as a function of temperature
using the ODE module. It is assummed that the expansion is in
equilibrium, including condensed species. In the model these
properties are then computed as nfrozen properties using the
local gas composition with condensed phases included.

The viscosity and thermal conductivity of the individual gaseous

species are calculated from formulas given in Reference 14 as
follows:

4,15822 x 10‘8 ,/Mw T

i
u = 2
i a3 S?i
C
uyR Py
Ki = Mw (.’45 + 1.32 mw—‘))
i i

The required Lennard Jones parameters, (01,91) are internally
stored in the computer program for 206 gas phase specles. (See
Subroutine MUK 1n Section 5 of this report, for a list of the
species.) The viscosity of the mixture 1is calculated from
Wilke's semi-empirical for'mula15

N N PR

X
U = B, (1 + ¢ij X )
i i

[
]
—_—

where N is the number of species, x; the mole fraction of

i
species i, and ¢1J is defined by:

Ref. 14: Svehla, R. A., "Estimated Viscosities and Thermal Con-
ductivities of Gases at High Temperatures," NASA
TR-132, 1962.

Ref. 15. Bird, R. B., Stewart, U. E., and Lightfoot, E. N.,
Transport Phenomena, John Wiley & Sons, 1960.
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-1/2 1/2 1/4 2
1 1 uyq

P, = 1 + — 1 + (—) ()
ij 23;2 MJ Hj M

The thermal conductivity, x, is based on the equation given by
Mason and SEMﬂml6 which is a slight modification of Eucken's

M

relation,

N N Xy -1
K=Y k|1 +1.0652 & —
=1 ! J=1 Hx
J#1 i

Theé results calculated as described above are used to
provide the BLM with properties using the following procedure.

The viscosity at the nozzle throat, u*, and the
corresponding temperature, T¥, are calculated. Uéing these
values, an exponent,w , 1s computed such that the expression

p= ¥ (17T

provides a best fit in a least square manner to the chamber and
exit values for viscosity. Next, a constant value for Prandtl
number is computed as
%*
uCp

* —_—

Pr = K

where ¥ , ¢ , and Cp are evaluated at the nozzle throat. The
"frozen" Cp value 1s used. The values transmitted to BLM are

then u*, T*, 6 w , and Pr*., Actually, BLM only uses the ratio
Pr/u, and does not require x or the frozen Cp versus T.

Ref. 16. Mason, E. A., and Saxena, S. C., Physies of Fluids,
Vol. 1, No. S5, pp. 361-369, 1958.
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2.6.5 Use of Boundary Conditions and Gas Properties by BLM

In general, the flow properties at the boundary layer edge
as computed by TDK are not isentropic. The TDK expansion is
isentropic only if the flow is in a state of equilibrium, or |if
the flow is frozen in composition. When the TDK expansion is
not isentropie, there are inconsistencies between TDK and BLM
with respect to edge values and gas properties,. Thus it is
important to describe the methods by which these parameters are

treated.

TDK supplies BLM with tables of v, and P vs X,
Corresponding values of static enthalpy, h, are computed from

the relation:

h=H =~-vVv /2

i.e., the BLM is given the condition that total enthalpy at the
boundary laygr edge is constant. In BLM enthalpy profiles and
velocity profiles at —constant pressure are used as state
variables, Temperature and the gas constant, R, are obtained as
a function of h by interpolation in the gas properties tables
that were computed by the ODE module (see Section 2.6.3).
Temperature is not a state variable, but together with the gas
constant, it is used to obtain the gas density from the equation

of state, i.e.,
p = P/RT,
Thus, in general the gas density used by BLM at the boundary

layer edge does not match the TDK value, although the values of
P, V, and h do mateh.

850127
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The only other gas properties required by BLM are the

Prandtl number, Pr' and the viscosity, u. A constant value 1is
input for Pr and the viscosity, u, is computed (see Section
2.6.4) as

* *m
u=u (T/T )
’ * *
where the reference values uy and T are taken at the nozzle

throat,

Values for Cp(T), Y{(T), and k(T) are made available to BLM
for auxillary calculations, but are not used in the boundary

layer solution procedure.
2.6.6 Solution Procedure

The solution procedure uses the numerical method described
in Bradshaw et.al., Reference 13, to solve the governing
equations presented in Section 2.6.1. This is an efficient
two-point finite-difference method developed by Keller and
Cebeci and extensively used by Cebeci for two-dimensional and
three-dimensional flows. A detailed description is presented in

Reference 13, and is not repeated here.

One of the advantages of this numerical method is that
nonuniform net spacings can be used in the x-direction as well
as across the boundary layer. In the latter —case, the
nonuniform grid is a geometric progression with the property
that the ratio of lengths of any two adjacent intervals is a
constant; that is, An, = KAn . The distance to the Jj-th

J J-1
line is given by the following formula:

850127
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ny - An1(KJ - 1)/(K - 1)

There are two parameters in the above
length of the first step, and: 2) K, the
steps. The total number of points, J,
the following formula:

1n{1 + (K - 1)(ne/An1)]

J = Tn K *

Default values used by the computer

are 0.01 and 1.14, respectively.

850127
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NOMENCLATURE FOR SECTION 2.6, BLM

Alphabetic Definition
_.Symbol _
A damping length
c ‘ density ratio, pe/p
C dimensionless density-viscosity ratio >
e local skin-friction coefficient, v /(1/2)p _u
r W e e
c specific heat at constant pressure
fp dimensionless atream function
g total emthalpy ratio, H/He
h static enthalpy
H total enthalpy
K flow index, O for two dimensional flow, 1 for
axisymmetric flow
L reference length
M Mach number
Mw molecular weight
p static pressure
Pr molecular Prandtl number
Prt turbulent Prandtl number
q heat-transfer rate
r radial distance from axls of revolution
rs local radius of body of revolution
R gas constant
R local Reynolds number, u _E/v
13 e e
S entropy
t transverse curvature term, y cos¢/ro
T static temperature
u,v X and y components of velocity, respectively
ue velocity at the edge of the boundary layer
u friction velocity (1 p )1/2
T W W
X surface distance
X axial distance
y distance normal to the surface of the body
850803
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NOMENCLATURE (Continued)

Greek_Symbol Definition
Y ratio of specific heats, CP/Cv
§ boundary-layer thickness
S* displacement thickness
em+ eddy viscosity
n similarity variable
8 momentum thickness
K gas conductivity
u dynamic viscosity
\ kinematic viscosity
p density
T shear stress -1
¢ angle of body slope, tan (dro/dX)
Y stream function
Subscripts Definition
o] chamber (stagnation) conditions
e edge of the boundary layer
r reference conditions
tr transition
W evaluated at the wall
X x-direction
Superscripts Definition
* nozzle throat conditions

Primes designate differentiation with respect to n

850803
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3. NUMERICATL, METHODS

In this Section numerical methods used by the ODK and TDK
programs are discussed. The ODK subprogram, integrates the system of
differential equations presented in Section 2.1.1. Standard integration
methods, such as Runge-Kutta, are impractical when applied to these
differential equations because of the very small step sizes often required
for stability, Consequently a fully stable integration method has been
developed and applied as described in Section 3.1.

Solution of the characteristic differential equations presented
in Section 2.5 also requires a numerically stable integration method. A
highly stable implicit finite difference method is presented in Section
3.2 for integration of these characteristic relationships.
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3.1 ODK NUMERICAL INTEGRATION METHOD

It has been shown by Tyson17 that in the numerical integration of relaxation
equations in near equilibrium flow regions (such as the chamber and nozzle inlet
in rocket engines), explicit integration methods are unstable unless the integration
step size is of the order of the characteristic relaxation distance of the relaxation
equations. Since the characteristic relaxation distance is orders of magnitude
smaller than the characteristic physical dimensions of the system of interest (such
as the nozzle throat diameter and length) in near equilibrium flow regions, the use
of explicit methods to integrate relaxation equations in these regions results in
excessively long computation times. Implicit integration methods were shown to
be inherently stable in integrating relaxation equations in all flow situations
(whether near equilibrium or frozen) and can thus be used to integrate with step
sizes of the order of the physical dimensions of the system of interest throughout
the integration reducing the computation time per case several orders of magnitude.
Since it has been demonstrated that there are significant advantages in using
implicit rather than explicit integration of the relaxation equations, a second order
implicit integration method has been chosen for use in the ODK computer program. -
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3.1.1 Stability Considerations

The numerical considerations leading to the above conclusions can

be illustrated by considering the simple relaxation equation

d _ _ 1 _Te (3.1-1)
dx .

which represents the relaxation toward equilibrium of chemical reactions, gas
particle lags, etc. In this equation Yo is the equilibrium condition and ris the
characteristic relaxation distance of the equation. In the equilibrium limit, r

is very small compared to the physical dimensions of the system of interest while
in the frozen limit, 7, is very large compared to the physical dimensions of the
system of interest. The mathematical behavior of solutions to the above equation
can be found by considering the simple case where T is constant and

Yo =Y +a(x-x0)

eo
which is equivalent to terminating the Taylor series for Ye after the first term.

The exact solution for this case can be shown to be

y(x; + h) = y(xo) + [Yeo - y(xo) - a-r] [1 - e-h/T] + ah

where y(xo) is the initial value of y and h is the integration step.

It is seen that the solution consists of two parts, a term which varies
slowly with x and a term which exponentially decays with a relaxation length of r,
the characteristic relaxation length of Equation (3.1-1). Thus after a few relaxation
lengths

y(x) = Yoo 30, h>>7

which is independent of y(xo) the initial condition. Since explicit integration
methods construct the solution of Equation (3. 1-1) as a Taylor series about

the initial condition y(xo) , the above example indicated that explicit integration
methods should be limited to step sizes of the order of a few relaxation lengths.
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That this is indeed the case can be shown by explicitly integrating
Equation (3.1-1) using Euler's method. The explicit finite difference form is

ylxg +h) -yl ylx) - Yeo

which yields the truncated Taylor series

h

y(x + h) =y(xo) (1 -%) *Yeo 7

when solved for y(xo + h). After n integration steps, it is found that

n n n-i
ylx, + nh) = y(x_) [ . -’:-] + L [yoo +i- 1) ah] [ - 1‘1-] 2

Examination of this equation shows that the independence on the initial condition
y(x ) will decay only if ll - h/'r,< 1, otherwise y(x + nh) will oscillate with
1ap1my increasing amplitude. Ilence the calculatxon will be stable only if h/r < 2.
Similar results are obtained for other explicit integration methods. (The stable
step size for Runge-Kutta integrations is h/r< 5.6.) Thus the stable step size for
explicit 1ntegration of rela:gation equations is of the order of the relaxation distance
which explains the large computation times associated with explicit integration

of relaxation equations in near equilibrium flow regions. As shown below, the use
of implicit integration methods allows the integration of relaxation equations on a
step size which is independent of the relaxation length.

Implicitly integrating Equation (3.1-1) using Euler's method, the finite
difference form of Equation (3.1-1) is

yix  + h) - y(xo)_ ) ylx_ +h) -y -ah

h T

which yields

y(x,) + (y, +ah) 2

y(xo + h) =
1+

<4}l
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when solved for y(xo +h). After n integration steps it is found that

(3.1-2)

Y(xo) N n yeo + iah b.
T

n Z: n+i-1
T T

Examination of this equation shows that the dependence on the initial condition
y(xo) always decays, regardless of the step size. Hence the implicit calculation

y(xo + nh) =

will always be stable. As an extreme example, consider one integration step,
h=x - X . From Equation (3.1-2), it is seen that

Y(X)=yeo+ah , h>>r

when the step size is large compared to the relaxation length and

n'4‘...,h>>1"

_ h
y(x) -Y(Xo) (1- -r) * Yoo -

when the step size is small compared to the relaxation leingth.

It is seen that in the equilibrium limit ( + small, h/r large) the exact
solution and the implicit integration of the relaxation equation go to the same
limit which is independent of the relaxation distance and depends only on the rate
of change of the equilibrium condition. In the frozen case (7 large and h/7 small)
the implicit and explicit methods are essentially the same (terminated Taylor series).
Thus, implicit numerical integration methods can be used to integrate relaxation
equations using step sizes of the order of the physical dimensions of the system
of interest in all flow situations whether near equilibrium or near frozen. For a
complete discussion of the numerical integration of relaxation equations,
see Reference 17.

In choosing a numerical integration fnethod, the primary items of concern
are the stability, accuracy and simplicity of the method. As shown by 'I'yson21 and
discussed above, implicit methods are to be preferred for numerically integrating
relaxation equations due to their inherent stability. Having chosen the basic inte-
gration method for stability reasons, the order of the integration method is determined
by accuracy and simplicity considerations. In general, the higher the order of the
integration method, the more complex the method becomes requiring more information

in the form of past value or past derivatives of the function being integrated.
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Second order methods (accurate to h2 with error of order h3) have the advantage

of simplicity and flexibility since they require only one past value of the function
while retaining sufficient accuracy to allow the use of reasonably economical step
sizes. For these reasons, a second order implicit numerical integration method
was chosen for use in the present program. A complete derivation of this numerical
integration method is given in the following section.
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3.1.2 Derivation of the ODK Numerical Integration Method

Consider the coupled set of first order simultaneous differential
equations.

dyi - ¢
'—d—x—— i(x,yl,. LI 'YN) ’ i—ll 2" "IN

It will be assumed that the equations are not singluar and that a solution exists
which may be developed as a Taylor series about the forward point

2 3 4

) 4

1 I /Y RS Pt IS Siatis | B WO

Lt dx | L dx’ 2 ) 3 it 24
Xn X lx +h X lx +h x_+h

where ki n+1 is the increment in Yy and h is sufficiently small. For equal
integration steps

2 3
dy. d”y. 2 d7y. 3
X, Fk, =21 ho- 4 — ho g1 h_
i, n+i i,n dx x +h ‘ 4| Z 1> . 6
: n x_+h x_+h
n n
d4y'. h4
- 16-—4‘ — 4 e
dx 24
x +h
n

Solving these equations for the derivative at the forward point, it is found that

3 o
e WU WS né
3

- 2h
xn+h dx

Expanding the function fi(x, Ye oo o yN) as a Taylor's series about the back
point (xn) , it is found that

{ N a3y nd
- =f _+ a, + o 3 S5t
dx xn+h i,n ' 9, rxh jgl px. J nkj. ntt dx3 -t
x



where

fl =fi(x' Yl e o o YN)-

of

S
@y~ x
-
i,] an

and the subscript n refers to the functions fi’ o and 51 j evaluated at the point
X Since

4

3 3
—d——x = g——x - d—! h + s u e
3 3 4
dx x dx x +h dx % +h
n n n
and
4 4
i—% = -d——} -t sy
dx X dx x_+h
n n
Thus the formula for Taylor Series expansion about the back point can be written as
3
dy d 2
i Yy h
bt yans s f. + d' h + Z p . k. + R —ad S s e
dx xn+h i,n i,n j=1 i, jyn j,ntt dx3 2

x n+h

Equating the expressions for the derivative at the forward point and back point,
it is found that

3K -k a3 |
i, n+{ i,n _ Y h2
5T fnt % n h+ [_E pw.n R Tt
dx
x +h
i n
or
3
N d’y. 3
{ Y
K, =+ |k, — b
i nbt 3E<l'n+z(fi'n+ai.nh+._Zﬂi’j'nkj'nﬂ)h]ér 3 SRS
)=t dx
xn+h
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Neglecting the third order derivative term and solving the set of N linear
nonhomogeneous algebraic equations

2 N
-Zp ) (-6, =4
( 3"1,i,n i,n+f ~ ; ( 1 b nkJ,nH 3 ki,n+2(fi.n+ai.nh)h]

where 6i j is the Kronecker delta thus yields a second order implicit solution
’
of the above coupled first order simultaneous differential equations.

For unequal step sizes, it can be similarly shown that solving the

set of N linear nonhomogeneous algebraic equations

2
h +h h
+1 n n+i
{ .01 n B. . _h k. - (t - k.
Zhn+l +hn i, i, n ntil i, ntt (Zhn'l'l +hn)h Z , jonj, n+l
= ) +({(f. +a h ) —— (h +h)
(Zhn+l+hn)hn ,n i,n 1, n n+i hn+1 n+i n

vields a second order implicit solution of the above set of coupled first order

simultaneous differential equations.
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3.2 TDK NUMERICAL INTEGRATION METHOD

The reacting gas characteristic relationships given |in
Section 2.5 are usually 1Integrated using second order explicit
methods. It has been shown, however , that implicit integration
methods are superior to explicit methods for 1integrating
chemical relaxation equations17. Thus, Iin the present program
the fluid dynamic equations are integrated using an explicit
Euler method while the chemical relaxation equations are

integrated using a first order implicit integration method.

In numerically caléulating flow fields using the method of
characteristics, only two (previously calculated) known points
are directly usable 1in <calculating a forward point. In
equilibrium flows, only two known points are required to
calculate a forward point and the calculation is straightforward
and unambigous. In nonequilibrium flows, however, more than two
known points are required to calculate a forward point so that a
choice must be made as to which points in the flow field will be
used directly and which will be interpolated. Since even small
interpolation errors 1in species concentrations are known to
cause serious stability and accuracy problems in the numerical
integration of the chemical relaxation equations, the Dback
streamline point and one characteristic point were chosen as the
known points. This choice avoids interpolation for the species
concentrations in that only fluid dynamic properties (velocity,
pressure, etc.) and the kinetic coupling terms (A and B) need be
interpolated at one of the ©back characteristic points. Since
these quantities are all slowly varying across the
characteristics mesh, they <can Dbe accurately 1interpolated.
Experience has shown that this choice of numerical integration
methods and known data points 1Is satisfactory for reacting gas
characteristics calculations. A derivation of the numerical
integration methods used in the program are given in Sections
3.2.1 and 3.2.2 below.

850917
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.1 Integration of the Fluid Dynamic Equations

Consider the flow field shown in Figure 3-1, below:

Streamline

Figure 3-1, Flow Field Interior Point Calculation

Between points 3 and 4 the Streamline <characteristic

relationships are integrated as:

Py = ry + (x3-xu)tan 93“ (3.2-1)
2 1/
V3 = Iy - 8P /G ep 0 ) 12 (3.2.2a)
or
_ 1/2
v, - {2(HT ¥ cihi)} (3.2.2b)
(3)
Py 43 A
Py " Py (FY) exp {-(335-§3<x3—x4)} (3.2-3)
3
Y-1
(===)
Py Ty3 o
T3 = 'I"4 (F;) exp {—(335—53()(3—)(4)} (3.2-4)
3
850917
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where the double subscripts imply averaged values, e.g.:

G = (@

34 +9u)/2 ,

3

(=) - (1/Y

+ 1/Y3)/2 , etc.
43

1
Y y

The integration formula (3.2-1) relating the coordinates of
points 3 and 4 is exact If the streamline is a circular arc

between points 3 and 4y, Equation (3.2-2a) {s the Bernoulli

Equation and 1is used to obtain a first estimate for V..

3
Successive estimates are made wusing the energy equation
directly, i.e., equation 3.2-2b, so that energy is conserved

exactly along streamlines. In integrating the energy equation
and the perfect gas relationship to obtain Equations (3.2-3) and
(3.2-4), the coefficients Y-1, A/cos 8, f{(¥y=-1)/Y , and B/cos 8
appearing in these equations were assumed to be equal to their

average value between points 3 and 4.

Between points 1 and 3 the right running characteristics

relationships are integrated as:

ry = r, ¢ (x3-x1) tan (8 - a)31 (3.2-5)

P, = P, + Pyl -(AGH)13+<GH)13——;————] (3.2-6)
(x,-%,) * G 5(05-0)]

3

The above equations are a finite difference form of

equations (2.5-3) and (2.5-4), respectively.

850917

3-12

R



If point 3 is an axis point then r3 and 63 are zero and the .

indeterminate quantity (sin 93)/r3 appearing in Equation (3.2-9)

can be approximated by using the value obtained at point 1.

Between points 2 and 3 the 1left running characteristics

relationships are integrated as:

x3 = X, * (r3—r2)/tan(e + a)32 (3.2-7)
sin 823

Py = Pyt p23{[ (AGF)23—(GF)23——F;;-— ] (3.2-8)
(r3—r2) - G23 (93-92)}

The above equations (3.2-7) and (3.2-8) are a finite
difference form of equations (2.5-1) and (2.5-2), respectively.

If point 2 is an axis point, then r2 and 92 are zero and the
indeterminate quantity (sin 62)/r'2 appearing in Equation (3.2-8)

can be approximated using the values estimated for point 3.

Equations (3.2-6) and (3.2-8) can be combined to yield:

sin 8
85 = PP e, [e(acr) - (o), __;;_3.__]“.3_{,2)
3in 913
=Py [-(acH) g+ (o) g _—FT;_—](X3_X1)
*Po30,538,%P 30,50, 1/ {Pya0, 0P oG ] (3.2-9)
850917
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The modifled Euler iteration method is used by TDK to solve
the above equations Iin the various point <calculations. The
implicit method used by TDK to integrate the chemical relaxation

equations is presented next in Section 3.2.2.

850917
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3.2.2 Derivation of the TDK Numerical Integration Method

The chemical relaxation equations are a coupled set of first order
simultaneous differential equations of the form

dc.
—t

dx =fi(clp CZ s ', CNO yxl Yzl Y3p Y4) i: 1' 2. .;.. N

along the streamline where Yy+ ¥Yg: Y30 and Yy refer to the fluid dynamic variables
V.p, T, and 6, respectively. Assuming that the equations are not singular and

that a solution exists which may be developed as a Taylor series about the forward
point, one obtains

. de, l
=T ‘ . B
n+h

where ki is the increment in S and h is sufficiently small. The first coefficient

. of the Taylor series may be calculated as

dc.
1

T Shilep e o Y Y Y YY)
Expanding as a Taylor series about the point X it is found that

dc N 4 .
i [ 2 ]
| =Lat & Bi,j,nl * J.gfi.j.nm’j *0l h
n+h

where ‘

of.
8 e 1
i,j E_c:

of,
i

P57 9y
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and the subscript n refers to the functions fi' 51 X and Qi j evaluated at
¢ ’
the point X,

Thus neglecting the second order error and derivative terms yields
the integration formula for the increment k { '
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3.3 SUMMARY OF THE TDX COMPUTATIONAL PROCEDURT

The steps below summarize the computational procedure used by
the TDK Computer Program (ODE-ODK-TDK input option):

Stepl. (Zone 1, inner zone O/F ratio)

1.1 ODE is used to compute: '

1.1.1 P,H solution at stagnation (chamber V=0)
condition

1.1.2 P,S solution at throat (pV maximum) condition.
Entropy, S, is computed in step 1.1.1 above.

1.1.3 € S solution at input contraction ratio.

1.2 An average expansion coefficient, Ne , Is computed by
Subroutine SURNE . This expansion coefficient
is the perfect gas expansion coefficient which
would yield the throat pressure ratio computed

in step 1.1.2,

1.3 A pressure table P(x) and its derivative dP(x)/dx are
computed using the perfect gas relations, Ne' and the
input thrust chamber geometry.

1.4 - The ODK Computer Program is used to integrate the
finite rate equations for one dimensional flow. The
integration begins at € So that the flow will not be
singular at the throat, P(x) and dP(x)/dx are used until
the flow is supersonic (M <1.02). For supersonic

flow the area defined relations are used.

Step 2.

The sequence described in Step 1, above, is repeated for zones 2

through N <50, the outer zone.

The following throat property tables are constructed during each of

the above calculations:

p.V, T, c, vs. P.
These tables begin at the ODK determined throat (pV maximum) and
end when the flow attains a Mach number of 1.5.
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Step 3.

Step 4.

Step S.

An average expansion coefficient, ‘yn, is computed for each
zone using the tables constructed in Step 2.
in (PI,/PI)

= = <
‘)’n W n=1, .. .N<50

The subscripts 1 and £ refer to the first and last table entries
(at the ODK throat and at M=1.5). Thus if the flow through the
throat is in equilibrium ywill attain the equilibrium value and if
the flow is frozen ¥ will attain the frozen value.

4.1 Using the above values of % and the upstream radius of
curvature at the nozzle throat, Ru' a two dimensional
(axially symmetric) initial data line is constructed using
a small perturbation method. The location of the iritizl
data line across the nozzle throat region
is determined. The location of the slipline positions is
also determined by the small perturbation method (from
the continuity relation). Pressure and flow angle are
matched (through a first order of approximation) at the
sliplines.

4.2 Flow properties of p, V, T, and c; are interpolated from
the tables constructed in Step 2 using the pressure determined
in Step 4.1.

A method of characteristics solution is computed for the nozzle.
Boundary conditions are the initial data line and nozzle wall with

a symmetry condition used along the nozzle axis and slip conditions
(matched pressure and flow angle) used along the streamlines dividing
zones of different O/F. The finite difference mesh is constructed at
gas streamline and left running characteristic intersections.
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4. PROGRAM STRUCTURE

This section contains an over-all description of the
Structure of the TDK computer progranm. TDK consists of a master
control module (MCM) and five major computational modules, as
follows: ODE, O0DK, TRAN, MOC, and BLM, Each module is
described briefly in Figure 4-1, The computational mpdules have
been combined with the MCM so that they «can be run together
automatically. The extensive use of internal communication
between the modules has eliminated the need for redundant inputs

by the user.

A schematic of an overlay structure for TDK is presented in
Figure 4-2, This figure should prove wuseful to programmers who
wish to convert TDK to a computer, such as CDC or Univac, on
which an overlay structure is mandatory. TDK has been developed
for the DEC 11/780 Virtual Address Extension (VAX) computer for

which no overlay structure is required.



MODULE

MCM

ODE

ODK

TRANS

MOC

BLM

Figure 4-1: BASIC MODULES OF TDK

DESCRIPTION

The Master Control Module is used to control the
execution of TDK by selecting the computation
modules to be exercised. The MCM is also used
to process output files for the purpose of

creating printed and plotted output.

The One-Dimensional Equilibrium module is used
to calculate ideal engine performance. Engine
performance c¢an also be <calculated assumming
that the chemical composition 1is frozen at

chamber (stagnation) conditions.

The One-Dimensional Kinetics module is used to
calculate the loss in nozzle performance caused
by finite-rate chemistry of the expansion

products.

The Transonic Flow module is used to calculate
two-dimensional flow conditions in the throat
region of the nozzle. It 1is used to obtain an
initial data line for the MOC module.

The Method of Characteristics module is used to
calculate the loss in nozzle performance caused
by flow divergence, including the effects of

chemistry and mixture ratio variation.

The Boundary Layer Module is used to calculate
the loss in nozzle performance due to a viscous
boundary layer and its interaction with the
nozzle wall. The effects of both drag and heat

transfer are included.
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FIGURE 4-2: SUGGESTED OVERLAY STRUCTURE TDK, VERSION 4,
APRIL 1985
MAIN
BLKDTA
FIND
GAUELM
ITER
MATCH
MUK
OMEGA
READAT
SAVDAT
SKPB1
SKPB2
SLP
SPLN
SUMPRT
UNIT

TTAPE PROBLM LTCPHS @DES @DK

CPHS @DKBLM
EFMT STF
HCALC
@UT1
SAVE
TPCALC
TSCALC

850107
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.

2A

@

2B 2C
SEARCH THERMP

2G
@ODKINP
@DWALL
PACK

SELECT

3A

850107

CHTYPE
CONVRT
ECNV1
FNDLM
MGET
NUMBR
PACKCD
PRATES
PREAX
PRES
REAXIN
STOICC
ST@RNU
SUBNE

2H

2D 2E
DET®ON FROZEN
RKT@UT
RACKET
VARFMT
EQLBRM
GAUSS
MATRIX
MAIN1D
DERIV
EF
FLU
GTF
TAUX
INT
LESK
QUTPUT
PRNTCK
TABGEN

h-y

2F
SHCK REACT



1F | TWep
L TSTDK
21 2J
TRAN TDK
ERRORZ
BANDI 3C 3D
FCALC CHAR
FINDT CUBIC
GETIL WALL
GETILV
NEWTL
PTAB
SAUER
TRIM
4A 4B
CNTRL ATSHCK
DSPT CKEXIT
PRINT CKSHCK
SUBIL CNTRL1
CNTRL2
CNTR12
. CNTR13
CNTR14
CNTR16
CNTR21
CNTR31
CNTR91
b-5

850107

AXISPT
CHECK

CRIT
EF2D
GPF
GPFKIN
GPFPG
INPT
INSRT
NESK
SDERIV
SINT
THERM
WLPT

ENCALC
FTHRST
GETPT
INPTR
INPTRS
INPTR1
INPTS
INTEXT
ITER?
ITERZ2
ITERS3
MLCK
MRCK
MRCK1

1G

BLEDGE
BLH
BL@OCKD
BLPLTS
BLSEG
BLTABL
BLW
COEF
COEF1
CUBICB
DIFF
EDDY
INPUTB
IVPL
LINI
QUTPBL
RBL
READBL
S@LVSL
WRPROF

PRINTS
SAVPT
SCK
SETID
SHCKA
SHCKA1
SHCKL
SHCKR
SHCKW
SHCKW1
SH@CK
STRACE
SUBILR
TCALC
WLCALC



4,1 PROGRAM FILES

The files wused by TDK are listed in Table 4-1. For those

files referred to by a Fortran variable name,
listed. The description of the file includes the
labeled common block in which the file name {s

Subroutines using the file are also listed.

The type of file is indicated by the following

binary

formated
MS mass storage (saved)
DA direct access
TMS temporary mass storage

the name {s

name of

the

communicated.

codes:

For Univac machines, write statements to unit 50 must

replaced by PUNCH statements.

4-6 C _g.
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Table 4-1: Files Used by TDK

Logical Fortran Type Description
Unit Variable
Name . _—
5 MUN F Data input stream
COMMON/NUCM30/
6 - F Printed output stream
8 IPUNIT F,TMS Initial Data Line file, $LINE,

COMMON/PCHILF,
Subroutine CHAR

10 LU F,TMS Temporary input,
COMMON/NUCM 30/, Subroutines
MAIN, SAVDAT,CHAR, LTCPHS,
ODES, OKDINP, REACT, REAXIN,
TDK, TTAPE

11% LUBLM F,TMS,MS TDK-BLM interface data,

COMMON/BLMZ/,SubPoutines
BLKDTA, ODES, PRINT, PRINTS,
PTAB, READAT, READBL

12 Luaur F,TMS,MS BLM~TDK interface data,
Subroutines BLMAIN, BLW, RBL

L4

13 NUPLT B, TMS BLM plots
Subroutine BLMAIN

14 NUPRQF B, TMS BLM plots
Subroutine WRPROGF

850108
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15%

16

17

18

19

20

21

23

25

850108

IRRED

KREX

JTABLE

JANAF

B, TMS,MS

DA

DA

DA

DA

B, TMS

B, TMS

B,TMS

F,TMS,MS

4-8

TDK restart
Subroutines READAT, SAVDAT,
MAIN

Direct access file for variable
mixture ratio option (1st pass)
Subroutines FINDT, GETILV, GETIL

Direct access flle for shock
option (1st pass)
Subroutines GETPT, SAVPT

Direct access flle for shock
option (2nd pass)
Subroutine CNTR91

Same as 16, (2nd pass)

Scratch data, Common/NTAPE/,
Subroutines BLKDTA, @DKINP
Initial line data,
COMMON/NTAPE/,

Subroutines BLKDTA, CHAR,
GETIL, GETILV, ODKINP, PACK,
SUBIL, TRAN, TSTDK

TDE unit, COMMON/NTAPEYV/,
Subroutines BLKDTA, @DES,
QUTPUT, TDK, TRAN

Thermodynamic data,
COMMON/CUTIL/, Subroutines
MAIN, TTAPE, @DK, PACK, SEARCH



26 KREAX B,TMS Scratch data, COMMON/CUTIL/,
Subroutines MAIN, ODKINP,
REAXIN
27 KSTF F,TMS Scratch data, COMMON/CUTIL/,
Subroutines MAIN, PACK, SEARCH
28 IRREAD B,TMS Scratch data, dOMMON/CUTIL/,
Subroutines MAIN, @DKINP,
REAXIN
29 % ITSTAB B,TMS,MS Transonic data, COMMON/CUTIL/,
Subroutines MAIN, GETIL,
GETILV, MAINID,TW@D
50 - F,TMS,MS Boundary layer edge data
computed by TDK, TDE, or TDF.
Subroutines PRINT, PRINTS, PTAB
* Files 11, 15, and 29 must be saved if the restart option,
IRSTRT = 1, is to be used on later runs.
850108
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y,2 SUBROUTINE AND COMMON BLOCK CROSS-REFERENCES

This section provides tables that contain cross-references
for subroutines and common blocks. Referal to these tables, or
their equivalent, 1is usually necessary if the program is to be
modified.

Table 4-2 1ists in alphanumeric order each TDK subroutine.
All modules are included. Opposite each subroutine name are the

names of all subroutines that call the subroutine.

Table 4-3 1lists in alphanumeric order each TDK common block.
Again, all modules are included. Opposite each common block
name are the names of all subroutines that contain the common
block.

Tables U4-2 and U4-3 do not contain the names of system

supplied subroutines, such as SIN, C0S, or the I/® subroutines.



SUBROUTINE

ATSHCK
AXIS
AXISPT
BANDI
BLEDGE
BLH
BLKDTA
BLMAIN
BLOCKD
BLPLTS
BLSEG
BLTABL
BLW
CHAR
CHECK

CHTYPE
CKEXIT

CKSHCK
CNTR12
CNTR13
CNTR14
CNTR16
CNTR21
CNTR31
CNTR41
CNTR91
CNTRL
CNTRL1
CNTRL2
COEF
COEF1
CONVRT
CPHS

CRIT

CUBIC
CUBICB
DERIV
DETON
DIFF
DSPT
ECNV1
EDDY
EF
EF2D
EFMT
ENCALC
EQLBRM

ERRORZ
FCALC

REFERRED BY

CNTR16
BLPLTS
CNTR14
NEWT
BLMAIN
MAIN

MAIN

BILMAIN
BLMAIN
BLEDGE
MAIN
TDK
ATSHCK
INPTR
WLPT
PREAX
CNTR21
CNTRL2
CNTRL1
CNTRO91
CNTRS91
CNTRO91
CNTRS91
CNTR91
CNTRS1
CNTRO91
TDK
TDK
CNTR13
CNTR12
BLSEG
BLSEG
PACK
EQLBRM
ROCKET
CHECK
SHCKR
WALL
BLTABL
IAUX
ODES
BLEDGE
CNTRL
MGET
BLSEG
DERIV
SDERIV
OUT1
SHOCK
DETON
TPCALC
CHAR
TRAN

CNTR21

CNTRL

INPUTB

AXISPT
INPTR1

CNTR31

CNTR31

CNTRL1

DSPT
INPTRS

CNTR41

(SUBROUTINE NOT USED)

CNTR21
CNTR14
IVPL

FROZEN
SHCK
DSPT
SHCKW1

INT

PRATES

TCALC
ROCKET

CNTRL

h-11

CNTR31
CNTR16

HCALC

SHCKAl

MAIN1D

REAXIN

SHCK

TDK

TABLE U4—2 SUBROUTINE ENTRY POINT CROSS-REFERENCES

CNTR41

SHCKAl

INPT
INPTS

CNTRL1

CNTR41
CNTR41

OUT1

SHCKL

THERMP



SUBROUTINE

FINDT

FNDLM
FROZEN
FTHRST

GAUELM
GAUSS
GETIL
GETILV
GETPT

GPF

GPFKIN
GPFPG
GTF
HCALC
IAUX
INPT
INPTR
INPTR1
INPTRS
INPTS
INPUTB
INSRT
INT
INTEXT

ITER

ITER1
ITER2
ITER3
IVPL
LESK
LINE
LINI

LTCPHS
MAIN
MAIN1D
MATCH
MATRIX
MGET
MLCK
MRCK
MRCK1
MUK

REFERRED BY ...

CHAR
IAUX
PRES
GETIL
DERIV
MGET
ROCKET
CNTR12
CNTR21
SKPB1l
EQLBRM
TRAN
TRAN
CNTR12
CNTR41
ATSHCK
INPTR
INSRT
SHCKR
SUBILR
GPF
GPF
DERIV
DETON
INT
CNTRL
CNTRL1
CNTR16
CNTR14
CNTR13
BLMAIN
CNTRL
MAIN1D
CNTR12
CNTR31
PRINT
TSCALC
ENCALC
SHOCK
ATSHCK
BLMAIN
IAUX
BLPLTS
BLEDGE
WRPROF
MAIN

ODK

ODKBLM
EQLBRM
REAXIN
CNTR12
CNTR13
CNTRL1
ODKBLM

CPHS
MAIN1D
PTAB
GETILV

PRATES

CNTR13
CNTR31

CNTR13
INPTRS
AXISPT
INPTR1
SHCKA
SHCKW
WLPT
SUBIL

MAIN1D
SAVE

MAIN1D
CNTRL2

CNTRL1

CNTR14
CNTR41
PRINTS

BLTABL

ROCKET
CNTR14
CNTR21

ROCKET

TN

ENCALC
MUK
STF
REAXIN

CNTR14
CNTR41

CNTR1l4
INPTS
DSPT
INPTRS
SHCKAl
SHCKW1

SHCK

CNTRL2
CNTR16

TCALC

INPUTB

CNTR16
CNTR31

GPFPG
PACK
THERM

CNTR16
CNTRL2

CNTR16
SUBILR
INPT
INPTS
SHCKL
SUBIL

WLCALC
CNTR21

TRAN

OUTPBL

CNTR41
CNTR41



SUBROUTINE

NESK
NEWOF
NEWT
NUMBER
ODES
ODK
ODKBLM
ODKINP
ODWALL
OMEGA
OUT1
ouT2
ouT3
OUTPBL
OUTPUT
PACK
PACKCD
PLOT
PLOTS
PRATES
PREAX
PRES
PRINT
PRINTS

PRNTCK
PROBLM
PTAB
RBL
REACT
READAT
READBL
REAXIN
RKTOUT
ROCKET
SAUER
SAVDAT
SAVE
SAVPT

SCALE
SCK
SDERIV
SEARCH
SELECT
SETID

SHCK
SHCKA
SHCKAl
SHCKL
SHCKR

REFERRED BY

SINT
DETON
TRAN
BLPLTS
MAIN
MAIN
ODK
ODK
ODKINP
ODKBIM
DETON
DETON
DETON
BLMAIN
INT
ODK
REAXIN
BLPLTS
BLPLTS
REAXIN
REAXIN
PACK
CNTRL
CNTR12
CNTR21
CNTRL2
INT
MAIN
TRAN
BLH
ODES
MAIN
INPUTB
ODKINP
ROCKET
ODES
TRAN
MAIN
DETON
CNTR12
CNTR31
SUBILR
BLPLTS
CNTR12
GPFKIN
ODES
ODKINP
CNTR12
CNTR21
CNTRL2
ODES
CNTR12
CNTR13
CNTR13
CNTR12

ROCKET

ROCKET
RKTOUT
RKTOUT
RKTOUT
BLSEG

MAIN1D

CNTR13
CNTR31

MAIN1D

BLW

ROCKET
CNTR13
CNTR41
WLCALC

CNTR14
SINT

CNTR13
CNTR31
SUBILR
CNTR14
SHCKW

CNTR14
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SHCK

SHCK
SHCK
SHCK

PRNTCK

CNTR14
CNTR41

SHCK
CNTR14
CNTRL1

CNTR14
CNTR41
WLCALC

CNTR16

THERMP

THERMP
THERMP
THERMP

CNTR16
CNTRL1

THERMP
CNTR16
CNTRL2

CNTR16
CNTRL1



SUBROUTINE

SHCKW
SHCKW1
SHOCK

SINT

SKPB1
SKPB2
SLP
SOLV5
SPLN

STF
STOICC
STORNU
SUBIL
SUBILR
SUBNE
SUMPRT
SUMPRT1
SYMBOL
TABGEN
TCALC
TDK
THERM
THERMP
TIMERX

TPCALC
TRAN
TRIM
TSCALC
TTAPE
TWOD
UNIT
VARFMT
WALL
WLCALC
WLPT

WRPROF

REFERRED BY

CNTR13
CNTR14
ATSHCK
SHCKR
ATSHCK
INPTR
SHCKA
SHCKW1
ODWALL
ODWALL
PACK
BLSEG
CHAR
FLU
MUK
STF
CONVRT
CONVRT
REAXIN
CNTRL
CNTR21
PRES
MAIN
SUMPRT
BLPLTS
IAUX
SHOCK
TWOD
ENCALC
ODES
CHAR
MLCK
TSCALC
TWOD
TRAN
ODES
MAIN
MAIN
MAIN
RKTOUT
CHAR
CNTR21
CNTR13
WLCALC
BLSEG

CNTR16
SHCKA
SHCKW
AXISPT
INPTR1
SHCKAl
SUBIL
SKPB2
WALL
TDK
IVPL
CNTRL
GPFPG
PACK
THERM
DERIV
PACK

CNTR31

MAIN1D

SDERIV

CNTRL
MRCK

CNTR31
CNTRL
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SHCKAL
SHCKW1
DSPT
INPTRS
SHCKL
SUBILR
WALL

WALL
CPHS
IAUX
PRES

MAIN1D

CNTR41

MAIN
TRAN

CNTR4 1
CNTRL2

SHCKL
INPT
INPTS

SHCKR
WLPT

ENCALC
MAIN1D
PTAB

ODKBLM

MAIN1D

SHCKW1



TABLE 4-3 COMMON BLOCK CROSS-REFERENCES

LABELED COMMON REFERRED BY SUBROUT INE LABELED ComMON REFERRED BY SUBROUT INE

A 8LCo
REAXIN BLEDGE
STORNU BLSEG
PRATES COEF
PREAX COEF1

ABMAPS EDDY
MAIN WRPROF
TDK BLC1
FLU IveL

ABOUND ouTPBL
CHAR SOLVS
GPFKIN BLSEG

AL COEF
BLMAIN COEF1
INPUTB EDDY
ouTPBL WRPROF
BLEDGE BLC2

ARCOE ouTPBL
MAIN COEF1
BLKDTA EDDY
ODES BLC3
PACK 1VPL
REACT SOLVYS
SEARCH BLSEG
DETON B8LCS
ODKINP SOLVS
ouT1 COEF
ouTPUT BLINTP

ARPRNT BLOCKD
ODES INPUTB
PROBLM BLEOGE
00K INP BLM1

AVGS MAIN
REACT PROBLM
SUMPRT READAT
TWOD SAVDAT
MAIN1D PRINT

BCON PTAB
BLOCKD PRINTS
INPUTB BLM2
READBL BLKDTA
BLEDGE ODES

8LCO READAT
BLOCKD READBL
BLMAIN ODKBLM
INPUTB TDK
IveL PRINT
ouTPBL PTAB
READBL PRINTS
SOLVS . BLM3

00ES
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

............................................. PRPIPR e acesesseevemmraese

BLM3 CINT
ROCKET MAIN1D
BLM4 1AUX
ODES INT
Tt LESK
BLMF CKSHCK
oK CHAR
PROBLM CMAXIT
SUMPRT 10K
BLMPLT CHAR
BLOCKD PRINT
BLMAIN PRINTS
INPUTB CODTDK
BLEDGE MAIN
BLSEG 00K
WRPROF MAINTD
BLMSPR ODKINP
BLH 0K
BLW : FLU
SUMPRT COEFFX
BLSEG SEARCH
BLPLOT CPHS
SLMAIN COM&
BLSEG MAIN
8LTK SUMPRT
BLMAIN TRAN
OUTPBL CHAR
BLTKPR COM6
PROBLM TRAN
CCINT GETIL
SINT GETILV
NESK SAUER
CDELHX COMCAS
MAIN MAIN
ODES BLW
SAVE ODES
TWOD PACK
MAIN1D READAT
CDELHY SAVDAT
BLH SUMPRT
ODES CONVRT
SAVE MAIN1D
TWOD ODKBLM
MAIN1D ODKINP
CDINTG ouTPUT
SUMPRT PRES
SUMPRT1 REAXIN
TRAN SELECT
CINLLN STF
CHAR STORNU
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

COMCAS CoMY
SUMPRT1 00K NP
TRAN ouTPUT
CHAR PRES
CNTRL REAXIN
DERIV STF
DSPT TRAN
EF CHAR
FCALC DERIV
FLU EF
GETIL FLU
GETILV GTF
GTF 1AUX
TAUX INT
INPT SOERIV
INT EF2D
OOWALL CONSTS
PRATES MAN
PRINT LTCPHS
PTAB ODES
SINT SAVE
SUBIL SUMPRY
WLPT UNIT
AXISPT CONVRT
GPFKIN EQLBRM
INPTR FROZEN
INPTR1 MAIN1D
INPTRS OOKINP
INPTS ouT1
NESK ouUTPUT
PRINTS RKTOUT
SDERIV SUMPRT1
SUBILR T0K
TCALC TPCALC
THERM TRAN
ATSHCK CHAR
EF2D 1AUX
ENCALC OOWALL

CoMXP PRINT
MAIN PTAB
ODES WALL
SUMPRTY GPFPG
TRAN PRINTS

coMy ENCALC
MAIN cooLc
PACX BLH
READAT BLW
SAVDAT INPUTB
CONVRT CPEES :
MAINID ROCKET
ODKBLM CPHS
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

CPEES CUTIL
ouT1 STF
CPRNT TOK
MAIN TRAN
PACK CHAR
MAINTD CNTRL
ODKINP FLU
INT GETIL
ODWALL GETILV
CPUNCH [AUX
PRINT PRINT
PRINTS SUBIL
CSPRXC GPFPG
MAIN PRINTS
PACK SUBILR
sTOICC THERM
CONVRT CWALL
REAXIN MAIN
SELECT QDES
STORNU PACK
CTRBDY READAT
AXISPT SAVDAT
CNTR14 MAIN1D
CNTRL1 ODK1NP
SHCKA PRES
SHCKA1 CHAR
CUTIL FLU
MAIN OQDWALL
O0DES PTAB
00K WALL
PACK CWALL1Y
REACT PROBLM
READAT WALL
ROCKET DASTOI
SAVDAT PACK
SEARCH READAT
SPLN SAVDAT
TTAPE DERIV
TWOD ’ EF
CONVRT SDERIV
CPHS EF2D
MAINTD DELHN
MUK BLH
00KBLM 0DES
ODKINP DFSAV
ouT1 OUTPBL
oUTPUT SUMPRT
PRES COEF1
REAXIN SUMPRT
RKTOUT DIRACC
SELECT TOK
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE
DIRACC ERR
CNTR91 WLPT
GETPT AXISPT
SAVPT CNTR12
DOLooP CNTR13
MAIN CNTR14
READAT CNTR16
SAVDAT CNTRL1
MAIN1D CNTRL2
00K INP GPFPG
PRNTCK INPTR
DERIV INPTR1
EF INPTRS
TAUX INPTS
INT PRINTS
SDERIV SDERIV
EF2D SHCKA
DOUBLE SHCKA1
ODES SHCKL
SHCK SHCKR
EQLBRM SHCKW
GAUSS SHCKW1
MATRIX SUBILR
ot WLCALC
EDGE ATSHCK
BLOCKD ENCALC
BLMAIN EXTRAP
INPUTB PACK
ouTPBL FLAGS
BLEDGE CNTRO
BLSEG CNTR12
COEF1 CNTR13
EDDY CNTR14
WRPROF CNTR16
ENDFLG CNTR21
CNTR CNTR31
PRINTS CNTR41
ERR CNTRL1
MAIN CNTRLZ2
TTAPE FLOW2D
TDK PROBLM
TRAN TRAN
CHAR CHAR
CNTRL CNTRL
DsSPY FTHRST
GETIL FNALBT
GETILV MAINTD
INPT DERIV
PRINT FLU
SUBIL [AUX
WALL



LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

LABELED CoMMON  TETTTLLLLTIND e ey

GBLK HTL
BLOCKD SAVDAT
BLMAIN ODKBLM
INPUTB CHAR
OUTPBL GPFXIN
BLEDGE GPFPG
BLSEG HTOTAL
COEF1 INPUTB
EDDY READBL
WRPROF BLEDGE
GEOM HTPR
BLW BLW
00ES PROBLM
PROBLM 1CONT
READBL MAIN
SUMPRT IDIL
ODKINP SUBILR
RKTOUT 1DNO
TRAN PROBLM
CHAR CNTR91
PRINTS SETID
GEOMN IHIT
BLW CNTR21
PROBLM CNTR3
GRD CNTR41
BLOCKD CNTRLY
BLMAIN INDSEG
INPUTB BLSEG
1veL COEF1
oUTPBL INDX
SOLVS MAIN
BLEDGE ODES
BLSEG REACT
COEF ROCKET
COEF1 SAVE
EDDY SEARCH
HHTCOM SHCK
ODES THERMP
EQLBRM CPHS
HTABLE DETON
INPUTB EQLBRM
BLEDGE FROZEN
HTFLX GAUSS
BLMAIN MCALC
QUTPBL MATRIX
BLSEG ouT1
HTL RKTOUT
ODES TPCALC
PROBLM INDXX
READAT ODES

REACT
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

INDXX KINFO
ROCKET MAIN
SAVE 8LH
SHCK ODES
THERMP PACK
CPHS REACT
DETON READAT
EQLBRM ROCKET
FROZEN SAVDAT
GAUSS SUMPRT
HCALC TWOD
MATRIX FROZEN
ot MAIN1D
RKTOUT OOKINP
TPCALC ouT1
INERTS ouTPUT
REAXIN PRES
SELECT REAXIN
LOFF RKTOUT
PROBLM SELECT
READBL TOK
IRRC TRAN
CHAR CHAR
INPTR GETIL
IRSTRT GETILY
MAIN PRINT
PROBLM PTAB
READAT PRINTS
SUMPRT LASTM
SUMPRT1 CNTR16
ISPLN CNTRL2
PROBLM LKEQKN
SPLN ROCKET
[USE LKMELT
MAIN MAIN1D
0DES DERIV
ROCKET LOWTH
SAVE MAIN
SEARCH LTCPHS
SHCK READAT
THERMP SAVDAT
CPHS CPHS
DETON STF
EQLBRM THERM
FROZEN M1
HCALC READAT
MATRIX SAVDAT
ouTt SINT
RKTOUT GPFKIN
SELECT SDERIV



LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

MACHDR MESHCX
DERIV CHAR
FLU CNTRL

MARKET PRINT
MAIN WALL
ODES WLPT
[0.11.4 PRINTS
PACK ATSHCK
PROBLM MISC
READAT MAIN
ROCKET BLKDTA
TWOD QDES
CONVRT PACK
MAIN1D REACT
ODKINP ROCKET
oUTPUT SAVE
REAXIN SEARCH
SELECT SHCK
TDK THERMP
TRAN CPHS
CHAR DETON
FLU EQLBRM
PRINT FROZEN
GPFPG HCALC
PRINTS MATRIX

MASFLW ot
MLCK RKTOUT
MRCK TPCALC
MRCK1 MISCT
SUBILR 8LOCKD

MESHC BLH .
TDK BLMAIN
CHAR INPUTB
CNTRL OUTPBL
PRINT READBL
SUBIL BLEDGE
MLCK BLSEG
MRCK COEF1
MRCK1 EDDY
PRINTS WRPROF
SUBILR MISCX

MESHCN ODES
CHAR REACT
INPT ROCKET
INPTR SAVE
SHCKL SHCK
SHCKR THERMP

MESHCW CPHS
CHAR DETON
WLPT EQLBRM
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

MISCX NAMEP
FROZEN DK
HCALC CHAR
MATRIX CNTRL
RKTOUT DSPT
MOLWTS INPT
ROCKET CNTR12
SEARCH CNTR13
ouT1 CNTR14
MusT CNTR16
DERIV CNTR21
FLU CNTR31
NAMBC CNTR41
TRAN CNTRL1
FCALC CNTRL2
SAUER GPFPG
NAME INPTR
SUMPRT INPTRY
SUMPRT 1 INPTRS
T0K INPTS
CHAR MLCK
CNTR91 MRCK
CNTRL MRCK1
DSPT SHCKA
INPT SHCKA1
PRINT SHCKL
SUBIL SHCKR
CNTR12 SHCKW1
CNTR13 WLCALC
CNTR14 CKSHCK
CNTR16 ENCALC
CNTR21 NAMEQ
CNTR31 TOK
CNTR41 CHAR
CNTRL1 CNTR91
CNTRL2 CNTRL
FTHRST DSPT
INPTR INPT
INPTR1 INSRT
P INPTRS PRINT
INPTS SINT
MLCK SUBIL
MRCK WLPT
MRCK 1 AXISPT
PRINTS CHECK
SHCKA1 CNTR12
SHCKL CNTR13
SHCKR CNTR14
SHCKW1 CNTR16
SUBILR CNTR21
WLCALC
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LABELED COMMON

NAMEQB

NAMES

REFERRED BY SUBROUTINE LABELED COMMON

................

CNTR31
CNTRAY
CNTRLA
CNTRL2
GPFXIN
GPFPG
INPTR
INPTRY
INPTRS
INPTS
MLCK
MRCK
PRINTS
SHCKA
SHCKA1
SHCKL
SHCKR
SHCKW
SHCKW1
SHOCK
SUBILR
WLCALC
ATSHCK
CKSHCK

CNTR12
CNTR13
CNTR14
CNTR16
CNTR21
CNTR31
CNTR4
CNTRLA
PRINTS
SHCKA

SHCKA1
SHCKL

SHCKR

SHCKW

SHCKW1
SHOCK

ATSHCK

MAIN
TRAN
CHAR
GETIL
GETILV
SuBIL
SUBILR

NAMEW

NAMIN

NCO1

424

..................

TRAN
FCALC
GETIL
GETILV

MALIN
QDKINP
TRAN
CHAR
CNTRL
PRINT
WALL
WLPT
CNTR12
CNTR14
CNTR16
CNTR21
CNTR31Y
CNTRA
CNTRLY
CNTRLZ
INTEXT
PRINTS
SHCKMW
WLCALC
ATSHCK
CKEXIT

MAIN
BLH
PROBLM
TWO0
MAIN1D
00K INP
TOK
TRAN
CHAR
FCALT
PRINT
GPFPG
PRINTS

CNTRL
ODWALL
PRINT
WALL
CNTR21
CNTR31
CNTRLY



LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

NCO1 NUCOM2
MLCK 0DES
MRCK 00K
PRINTS PACK
NDEBUG PROBLM
TRAN ROCKET
FCALC TWOO
NEWPRT ODKINP
BLW OuTPUT
OOKINP 0K
NODK TRAN
00K CHAR
QDKINP DSPT
NOINST GPF
CNTRL1 INPT
INPTR ODWALL
NRXDIR PRINT
PACK PTAB
CONVRT SUBIL
REAXIN WwLPt
PRATES AXISPT
NTAPE GPFPG
BLKDTA INPTR
PACK INPTR1
ODKINP INPTRS
TRAN INPTS
CHAR PRINTS
GETIL SHCKA
GETILV SHCKA1
SUBIL SHCKL
SUBILR SHCKR
NTAPE1 SHCKW1
BLKDTA ATSHCK
ODES ENCALC
OUTPUT NUCOM3
TDK MAIN
T ES
NUCM30 RAN %osw
MAIN READAT
INPUTS SAVDAT
LTCPHS PRINT
ODES PTAB
PROBLM PRINTS
REACT NUCOM4
SHCK BLKDTA
TTAPE PROBLM
OOKINP ouT1
REAXIN OUTPUT
TRAN RKTOUT
CHAR CHAR
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

........................................................................

NUCOM4 ODKCOM
PRINT MAIN
PRINTS ODES
NUCOMS 00K
MAIN PACK
ODES READAT
TOK ROCKET
TRAN SAVDAT
CHAR CONVRT
NUCOM6 MAIN1D
MAIN ODKBLM
TRAN OOKINP
PRINT ouT1
CNTR21 ouTPUT
CNTR31 PRES
CNTRS1 PRNTCK
PRINTS REAXIN
NUCOM7 RKTOUT
MAIN SELECT
O0DES CHAR
ODKINP DERIV
Tl EF
TRAN FLU
CHAR TAUX
NUCOM8 INT
ODES PRINT
CHAR PTAB
NUCOMN SINT
ODES PRINTS
ROCKET SDERIV
ouT1 EF2D
NUT ODKRX
oK MAIN
GETIL PACK
OAE READAT
ODES SAVDAT
PROBLM CONVRY
ODKINP ) DERIV
TRAN EF
ODEOQUT SDERIV
ROC;(ET EF2D
[+ 1) 0DKSP
ODERG ks MAIN
ODES PACK
ROCKET READAT
ouT1 SAVDAT
ODESAV TWOD
TWOD CONVRT
MAIN1D MAIN1D
ouT1 00KBLM
RKTOUT
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

0DKSP PCTBL
0DKINP PTAB
OUTPUT PERF
REAXIN MAIN
STF 0DES
CHAR ROCKET
DERIV SHCK
EF OETON
FLU EQLBRM
GTF FROZEN
TAUX om
PRINT RKTOUT
SusIL TPCALC
GPFKIN PERFX
GPFPG ODES
PRINTS ROCKET
SDERI1V SHCK
SUBILR DETON
THERM EQLBRM
EF2D FROZEN
ENCALC out1
OPTION RKTOUT
INPUTS PEXIT
PROBLM SUMPRT
SUMPRT SUMPRT 1
ouPT CNTRN
BLKDTA CNTRL
SHCK PLUMEC
THERMP SUMPRT
DETON TWOD
FROZEN CHAR
ouT1 CNTRL
RKTOUT PRINT
VARFMT CNTR21
EFMT CNTR31
PATHL CNTR41
READAT PRINTS
SAVDAT POINTS
CNTRL MAIN
SINT 0DES
SuBIL ROCKET
SDERIV SHCX
SUBILR THERMP
PCHILF DETON
CHAR EQLBRM
PCTBL FROZEN
READAT HCALC
SAVDAT MATRIX
SUMPRT ouTH
ouT1 RKTOUT
TRAN TPCALC
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

........................................................................

POINTS PRNTRX
CHAR BLPLTS

POINTX PTABLE ‘
OOES MAINTD
ROCKET ODKINP
SHCK PRES
THERMP FLU
DETON 1AUX
EQLBRM PTSAVE
FROZEN MAIN
HCALC 00ES
MATRIX PUNCHC
RKTOUT PROBLM

PPPXX PRINT
CHAR PTAB
CNTRL PRINTS
SUBILR RATES

PRES ODKINP
BLMAIN REAXIN
INPUTB PRATES
BLEDGE RDCARD
COEF MAIN
COEF1 RDIREX
EODY MAIN

PRFGAS QDES
MAIN PACK
PROBLM SEARCH
SUMPRT sToIcC
TW0O CONVRT
DK REAXIN
CHAR SELECT
DSPT PRATES
GPF RELPOT
INPT BLW
PRINT PROBLM
SINT SUMPRT
WLPT SUMPRT1
AXISPT REPEAT
INPTR MAIN
INPTR1 ODES
INPTRS PROBLM
INPTS READAT
PRINTS QDKINP
SHCKA TOK
SHCKA1 CHAR
SHCKL CNTRN
SHCKR GETIL
SHCKW1 GETILV
ATSHCK PRINT
ENCALC PTAB
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE
REPEAT SHOCKC
PRINTS PROBLM
RLMNR SUMPRT
BLMAIN TOK
COEF1 TRAN
RVACOM CHAR
MAIN1D sKip
QDKINP CNTRL1
QUTPUT INPTR
INT SPECES
SAVODE 00ES
MAIN ROCKET
O0DES SAVE
SAVPR! SEARCH
SUMPRT SHCK
PRINTS THERMP
SCLFTR CPHS
INPUTB DETON
READBL EQLBRM
BLEDGE FROZEN
SCRJT1 HCALC
ODES MATRIX
SHCK1 ouT?
PROBLM RKTOUT
SUMPRT SPECEX
CHAR ODES
CNTR9 ROCKET
WLPT SAVE
CNTR41 SHCK
CNTRL1 THERMP
PRINTS CPHS
SHCK2 DETON
SUMPRT EQLBRM
CHAR FROZEN
WLPT ) HCALC
CNTR16 MATRIX
CNTR21 RKTOUT
CNTR31 SPINFO
CNTR41 MAIN
PRINTS BLMAIN
SHGAMA 00ES
MAIN PACK
00K ROCKET
PROBLM SEARCH
SUMPRT SHCK
ODKINP SUMPRT
TDK CPHS
CHAR EQLBRM
DERIV ODK INP
SINT ouT1
SDERIV
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

SPINFO TBLDT2
RKTOUT MAIN1D
SELECT ouT1
SUMPRT 1 TAUX
PTAB PRINT
SSUMS PTAB
ROCKET PRINTS
out1 TBRSAV
STREAM ODKINP
ODES REAXIN
SUMPRT SELECT
TWOD TOKMAX
MAIN1D T0K
TRAN CHAR
CHAR CNTRL
GETIL OSPT
GETILV INPT
GPFKIN INSRY
TABL PRINT
8LOCKD SUBIL
INPUTB WLPT
OUTPBL AX1SPT
READBL CNTR12
8LEDGE CNTR13
COEF1 CNTR14
WRPROF CNTR16
TABS CNTR21
BLMAIN CNTR31
OUTPBL CNTR41
BLSEG CNTRL1
TBLDT1 CNTRL2
MAIN FTHRST
ODES GETPY
PROBLM GPFKIN
READAT GPFPG
SAVDAT INPTR
MAIN1D INPTRY
ODKBLM INPTRS
ODKINP INPTS
TRAN INTEXT
GETIL PRINTS
GETILY SAVPT
TAUX SHCKA
PRINT SHCKA1
PTAB SHCKL
PRINTS SHCKR
TBLDT2 SHCKW
MAIN SHCKW1
ODES SUBILR
READAT WLCALC
SAVDAT ATSHCK
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LABELED COMMON REFERRED BY SUBROUTINE LABELED COMMON REFERRED BY SUBROUTINE

TEMP WALL
BLSEG BLOCKD
EDDY BLMAIN
TEQEC INPUTB
O0DES QUTPBL
THISPT SOLVS
ROCKET BLEDGE
THMO BLSEG
BLOCKD COEF
BLMAIN COEF1
INPUTB EDDY
IvPL WALLTM
ouTPBL 8LOCKD
READBL INPUTB
BLEDGE BLEDGE
BLSEG WTYPE
COEF1 BLW
EDDY PROBLM
THRST SUMPRT
FTHRST SUMPRT1
TOTSC XTNDED
MAIN BLOCKD
READAT BLMAIN
SAVDAT INPUTB
MAIN1D READBL
TRAN BLEDGE
FCALC YSAVE
GETIL BLSEG
GETILV WRPROF
TAUX 2DEBUG
TSTABL READAT
MAIN SAVDAT
READAT STF
SAVDAT DERIV
TWOD THERM
MAIN1D ZLAST
GETIL SUMPRT
GETILV TOK
LAUX CNTRL
TT0K PRINT
00K CNTRL1
QUTPUT CNTRL2
W1 PRINTS
INPUTB ZTRAN
TWOPHZ MAIN
PACK READAT
CONVRT SAVDAT
MAINTD TWOD
ODKINP MAIN1D
OUTPUT TRAN
GETIL
GETILV
TAUX
INT
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5. PROGRAM SUBROUTINES

This section contains descriptions of the TDK sSubroutines.

TDK is organized into 6
TRANS, M@C, and BLM. The
by modules, i.e., the MCM
the ODE subroutines are

modules, as follows: MCM, @DE, @DK,
Subroutines descriptions are presented
Subroutines are given in Section 5-1,

given 1in Section 5<2, ete. At the

present time, complete descriptions are not avallable for all of

the M@C subroutines.
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5.1 MCM SUBROUTINES

The Master Control Module is used to control the execution
of TDK by selecting the computation modules to be exerclsed.
The MCM is also used to process output files for the purpose of
creating printed and plotted output. The MCM consists of the

following subroutines:’

MAIN SAVDAT
BLKDTA SKPB1
FIND SKPB2
GAUELM SLP
ITER SPLN
LTCPHS SUMPRT
MATCH TTAPE
MUK UNIT
@GMEGA

PROBLM

READAT

MAIN provides the entry point to TDK and is the master

subroutine for the entire program.
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5.1.1 PROGRAM MAIN

This is the main program for TDK and as such provides

communication between modules, defines the upper level labeled
common blocks, and initializes certain logical control
variables. MAIN calls the thermodynamic tape generation

subroutine, TTAPE, as required. Subroutine PROBLM is called to
read the $DATA namlist and determine the sequence of modules to
be executed. Subroutines ©DE and @DK are called to perform
equilibrium/frozen and one dimensional kinetic calculations.
Subroutine TW@D 1is <called to perform transonic and two
dimensional method of characteristics calculations. Subroutine
BLMAIN is <called to perform the boundary layer calculations.
Subroutine BLW is called to calculate the displaced nozzle wall.
Subroutine BLH 1is called to calculate the increase in
propellant enthalpy contributed by the regenerative cooling
circuits. The ODE, @DK, TRANS, and MOC calculations are then
repeated if the repeat option has been specified.
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5.1.2 SUBROQUTINE BLKDTA
SN Y eV DhiA
BLKDTA contains atomic data stored in AT@M(L,}) and many of the
variables used with the variable format, FMT. The ATZM variables are defined in
appendix B, Reference 3. The format variables are stored In the common labeled
@UPT and are described here.

A variable format was used so that one format, FMT, could be used
in the final output with changes in the number of decimal places according to
the sizes of the numbers. The format is used to print a label and from I to 13
assoclated numbers. The labels contain 14 alphanumeric characters stored in
four words and printed with 3A4,A2. The numbers are all printed in a field of 9,
FMT is tnitially set (n BLKDTA as follows:

MT 1) @ @ @ 6 ® @ @ (@ 100 (11
(IH ,3A4 ,A2, F9. 0, F9. 0, F9 0, F9. o,
MT (12) (13 (19 @s) @e a7 s (19)  (20)  (21)

F9., 0, F9, 0, F9, 0, F9, 0, F9, aQ,
T @2 @) ey @5 @e) @7 @e @y ao
F9. 0, F9. 0, Fg, 0, F9. 0 )

where the spaces are stored as blanks,

Some variables set in  BIKDTA to modify FMT are as follows:
Variable: FO F1 F2 F3 P4 FS FB FMTI13 FMTIX FMTI19
Storage: 0, L, 2, 3, 4, s, 13, 9X, 19,

The following is a list of variables used as labels and printed with
3A4, A2 in FMT:



Variable Stored label

FP P, ATM

FT T, DEGK

FH H,CAL G

FS S, CAL/(G) (K
™M M, MOL WT

FV (DLV/DLP) T

FD (DLV/DLT) P

FC CP, CAL/(G) (K
FG GAMMA (S)

FL SON VEL, M/SEC
FR1 PC/P

FCl1 CF

FN MACH NUMBER
FR CSTAR, FT/SEC
Fl ISP, LB-SEC/LB
FA IVAC, LB-SEC/LB
FAl, FA2 AE/AT

5.1.3 SUBROUTINE FIND

This subroutine locates the index, I, in a table such that
X < X <X(I+1).



5.1.4 Subroutine GAUELM(A,B,X,N,M, NDIM,MDIM,LDIM,EPS,KERR)

This subroutine solve a linear system of equations using Gaussian e]iminafion
with row interchange.The equation is put in matrix form as:

AX=8
where A,B and X are matrices of proper dimensions.
Calling Sequence

A,B,X Matrices coefficients

N, M Dimensions used: A(N,N), X(N,M), B(N,M)

NDIM Max imum row dimension of A

MDIM . Max imum row dimension of B

LDIM Max imun row dimension of X

EPS Lower bound for the absolute value of the pivot
KERR Error indicator,nonzero means error
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5.1.5 SUBROUTINE ITER (F1, X1, XNEW, N@®)

The purpose of this subroutine s to find the root or zero of the
algebraic equation
fX) =0
using the method of secant or false position. In particular this subroutine
1s designed to take advantage of the fact that the secant method will always
find the root of the above equation If the root has been spanned.

Calling Sequence:

F1 Is the value of the dependent variable, f, corresponding to
the value of X1.

X1 is the value of the Independent variable, X, which corresponds
to Fl,

XNEwW ls the predicted or new value of the Independent variable
NG is a flag such that

N@Z = -1 the first time ITER is called.

N@Z = +1 upon subsequence calls.

Restrictions:
The user Is expected to check for convergence as there are no Internal
checks made In ITER.
Method:
Subroutine ITER utilizes the secant method predictor formula
X =Xt =X )/ - 1)
where the subscript | refers to the current value of X and f
except for the first {teration In which the value of X is perturbed only slightly.
When the root has been spanned the subroutine saves 2 back value of f and X
In order that the root may always be straddled and thus found. The linkage to the
subroutine is set up so that If bounds on the root are known, then the value of
XNEW may be disregarded and bounded values may be used for the first two
guesses. This type of linkage necessitates that the value of X1 must be set
equal to XNEW or the bounded value of X. In order to speed up convergence,
If the error within the bound ‘d domain of the dependent variable exceeds a ratlo
of 10, then the new value o1 X is set equal to one half of the range,



5.1.6 SUBROUTINE LTCPHS

This subroutine processes the low temperature C H, S

p!
Thermodynamic Data extension input as described in detail in

Section 6.1.

5.1.17 SUBROUTINE MATCH

This subroutine is called by ROCKET to supply subroutine MUK
with a vector of {nternal sequence numbers which point to the
appropriate Lennard—-Jones parameters used by MUK to calculate
transport properties. The 1input to MATCH is the species name
(from the SUB array) and the output corresponds to the 1index
numbers in the table in the MUK write up.
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5.1.8 Subroutine MUK (CP, XW, T, C, IT, N, XM XMT, TK, PR)

This routine calculates the viscosity, thermal conductivity and Prandtl number

for a gas composed of a mixture of species.

CALLING SEQUENCE:

Cp

Xw

IT

XMT

PR

Method:

is an array of N specific heats of the
species (f*/sec® °R)

is an array of N molecular welghts of
the species (slug/slug mole)

is the temperature of the gas CR)

is an array of N mass fractions of the
species

s an array of N indices of thoe species
into a table of collision dlameter (o)
and energy of attraction (€/k)

is the number of specles in the gas

Is an array of N viscosities of the
specles, (Ibf+sec/ft?)

{s the total viscosity of the gas,
(1bf«sec/ft?)

is the thermal conductivity of the gas,
(ft-1bf/ft? sec CR/ft))

is the Prandtl number of the gas,-

5-9

(INPUT)

(INPUT)

(INPUT)
(INPUT)

(INPUT)

(INPUT)
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(FUTPUT)

(BUTPUTD)

(FUTPUT)

Specific Heat

Molecular Weight



= table (T"l') table of Qvs T*
= table (i) table of ¢ and ¢/k
vs, individual
-8 Mw T species
4.15822)(’10 i
o
M -1/2 M 1/4 |2
23: 2 ! Iw ] w
i i
-1
N N X
= Z |u [(1+2Z & -xj- viscosity of the gas
i i
i=1 i=1 § 1
1#1
C
A" (.45 + 1.32 modm)
Mo (454 132 gy
i i
[ N N x, \*!
=|Z K {1 +1.065 z 8 YL thermal conductivity
| =1 =1 b &
J#1

Prandtl number



Equations for K, and g | are from Reference 14, The values of the collision
Integral are from Table 2 of Appendix B in Reference 15. The relations used
to calculate yand K of the mixture are from Reference® 15 and 16, respectively,

Also from Reference 1l are the values of the collision diameters, o, and
energy of attraction, e/k.

Table 5-1 -correlates the chemical name of the species to the internal number
assigned to it by the subroutine., Also included is the key~punch

name assigned to the species, since lower-case letters and subscripts are
non-standard features in most computer configurations.

Ref.lH.Svehla; R. H. , "Estimated Viscosities and Thermal Conductivities
of Gases at High Temperagures", NASA TR R-132, 1962.

Ref 15, Bird, R. B., Stewart, W.E., Lightfoot, E.N., Transport Phenom-
' ena , John Wiley & Sons. Ine. New York 1960.

Ref.16, Mason, E, A,, and Saxena, S, C., Physics of Fluids, Volume 1, No, 5,
pp. 361-369, 1953,




Table 5-1:

Species
Number

W ® N G bW

W W W W W BN NN N NN N e s b et e e e e
B W N~ O W N O DS WN R~ O WO N G W NN =~ O

Name
Al
AlCl
AlCla
AlF
AlF3
AIN
AlO
AlS
Alz
Afr
Ar
AsHj,
B
BBr;
BCl
BCl,
BCla
BF
BF;
BR
Bl
BO
B(OCHa)s
B
BaHe
BaOs3
Be
BeBra
BeCi
BeCla
BeF
BeFa
Bels

SPECIES NAMES AND IDENTIFIERS

Chemical Key Punch

Name
AL
ALCL
ALCL3
ALF
ALF3
ALN
ALO
ALS
AL2
AIR
AR
ASH3

BBR3
BCL
BCL2
BCL3
BF
BF2
BF3
BI3
BO
B(OCHJ)3
B2
B2H6
B203
BE
BEBR2
BECL
BECL2
BEF
BEF2
BEI2
BE2



Species
Number

35
36
37
38
39
40

41
42
43
44
45
46
47
48

49
40

2l
52
53
54

52
63
64
65
b6
67

Chemical

Name

Br
BrF
BrF,
BrO
Br, .
C

CBirFs
CBry
CCl
CCl1F,
CCl1;
CCl,F;
CCl;
CCl,F

CCl,
CF

CF,
CFa
Cr,
CH

CHBrCir¥

CHBErC1,
CHBr,
CHCI1Fa
CHCl,
CHF,
CH3BrCi
CHCIF
CH;CL,
CHaF,
CHzls
CHjBr
CH;Cl1

Key Punch
Name

BR
BRF
BRF3
BRO
BR2
C

CBRF3
CBR4
CCL
CCLF3
CCL2
CCL2F2
CCL3
CCL3F

CCL4
CF

CF2

CF3

CF4

CH
CHBRCLF
CHBRCL2
CHBR3
CHCLF2
CHCL3
CHF3
CH2BRCL
CH2CLF
CH2CL2
CH2F2
CHz2I2
CH3BR
CH3CL



Species
Number

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99
100

Chemical

Name
CHsF
CH.l
CH,OH
CH,
CN
co
Ccos
COg
CP
Cs
Cs
G
CoHa
CaH,
CzHe
CaHgCl
CaHsOH
C3N3
CH,OCHa
CH,CHCHs3
CHsCCH -
cyclo-CsHe
CaH
n-CsH,0H
CH,COCH,3
CH3;COOCHs,
n- C;Hlo
iso-CyHio
CaHgO Czlls
CH3COOCzHs
n-CgH,2

C(CHa)e
CeHs

Key Punch
- Name

CH3F

CH3Il

CH30H

CH4

CN

CcO

COS

CcO2

CpP

CS

cs2

C2

C2H2

C2H4

C2H6
C2HS5CL
C2H50H
C2N2
CH30OCH3
CH2CHCH3
CH3CCH
CYCLO-C3H6b6
C3HS8
N-C3H70H
CH3COCH3
CH3COOCH3
N-C4H10
1SO-C4H10
C2HSOC2HS
CH3COOC2HS

N-C5H12

C(CH3)4
C6Hb6



Species

Number
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

Chemical
Name
CaHia
n=-CgHi,q
Cd
Cl
CICN
CIF
ClF;
Cl10
Cla

FCN
Fa

HBr
HCN
HQCl
HF
HI
HS
Ha
H,O
H30,
HaS
He

I‘Ig Bfg
Hg Cla
Hgly
IC1

Li

LiBr

Key Punch

Name
C6HI12
N-C6H14
CD

CL

CLCN
CLF

CLF3
CLO

CL2

FCN
F2

HBR
HCN
HCL
HF

HS

H2
H20
H202
H2S
HE

HG
HGBR2
HGCL2
HGI2

ICL
I2

LI
LIBR



Species Chemical Key Punch

Number Name Name
135 LiCN LICN
136 LiCl LICL
137 L{F LIF
138 LiI LI
139 LiO L10
140 Lia LI2
141 Li;0 LI20
142 Mg MG
143 MgCl MGCL
144 MgCla MGCL2
145 MgF MGF
146 MgFa MGF2
147 Mgs; MG2
148 N N
149 NFs NF3
150 NH NH
151 NHa NH3
152 NO NO
153 NOC1 NOCL
154 Nz N2
155 N20O N20O
156 Na NA
157 NaBr NABR
158 NaCN NACN
159 NaCl NACL
160 NaF NAF
161 Nal ~ NAI
162 NaO NAO
163 NaOH NAOH
164 Nasz NA2
165 NazO NA20O
166 Ne NE
167 O 0]

168 OF OF



Species Chemical Key Punch

Number Name Name
169 OF; OF2
170 OH OH
171 Og 02
172 P P
173 PCl PCL
174 . PCls PCL3
175 PF PF
176 PF, PF3
177 PH, PH3
178 PN PN
179 PO PO
180 PS PS
181 Pa P2
182 Py P4
183 S S
184 SF, SF6
185 SO SO
186 SOz SO2
187 Sa S2
188 S3F3 S2F2
189 St SI
190 S1Cls SICL
191 SLCla SICL4
192 SiF SIF

© 193 Si1FCla SIFCL3
194 SIF,Cl, SIF2CL2
195 SiF;Cl SIF3CL
196 SiF, SIF4
197 SiH,. SIH4
198 . Si0 SI0
199 Si0O; S102
200 SiS SIS
201 Sla Si2
202 SnBra SNBR2
203 SnClL, SNCL4
204 UFg UF6
205 Xe XE
206 Zn ZN



5.1.9 gsybroutine OMEGA

This subroutine calculates the exponent, w, used in the viscosity-temper-
ature relationship
()"
U= T .
ref Tref
using the method of least squares., Thatls, it calculates the value of (, which
gives the smallest sum of the errors squared, This form of the viscosity-temper-
ature relationship was selected since the BIM module requires

viscosity data in thls manner,

In order to supply the maximum amount of accuracy and also to minimize the
variation in data due to the selection of an exit area ratio, it mas decided to match
the throat value of viscosity exactly and select an which would provide the best
fit for viscosity at the chamber and exit of the motor,

The form of the error, E, was taken to be

E=Ilny/p*-wln T/T*

Squaring the errors, differentiating with t:espect to w , and setting the results
equal to zero, ylelds the following value for

w=0n T_/T* In y /u* +1n T/T* In y /u*)/(n 142 + (n T,/T97)

where
T = temperature

viscosity
refers to the exit plane
refers to the chamber

* a0 0o %
H

refers to the throat plane



5.1.10 SUBROUTINE PROBLEM

Subroutine PROBLEM sets those default values that are
concerned with the computational options of the program, such as
the module execution flags (@DE, ©DK, TDK, BLM, TDE, IRPEAT, and
IRSTRT). The $DATA namlist is read (see Section 6.). Flags
controlling the sequence of module execution are set as
determined by the options requested through the $DATA 1input.
Nozzle geometry parameters are placed into the GEOM array for

communication to the various modules.

5.1.11 SUBROUTINE READAT(NTAPE)

Subroutine READAT 1is called by Program MAIN to read data
written by subroutine SAVDAT on unit NTAPE (=15) for the purpose
of restarting the ODE and ODK modules.

5.1.12 SUBROUTINE SAVDAT (NTARE)

Subroutine SAVDAT is called by Program MAIN to write data on
unit NTAPE (=15) to be used later for restarting the ODE and ODK
modules. This data is read later by subroutine READAT.
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5.1.13 Subroutine SKPB1(XA,YA,XE,YE,THA,THR,C1,01,El)

This subroutine computes the coefficients for the skewed parabola defined by
two points and the tangent at one of these points and the axis angle. The equation
of a skewed-parabola is

(Y-tan(Tr) X)2+ CX+D Y+ E =0

where Tr is the axis angle.

The subroutine solves for the coefficient C,D and E by using the condition on
the two points and their tangents. The resulting equations form a linear system of
3 equations in 3 unknowns which is solved by Gaussian elimination with improvement
correction using subroutin GAUELM.

Calling sequence:

XA, YA coordinates of attachment point

XE,YE . coordinates of nozzle exit lip
THA attachment angle
THR axis angle,Tr

C1,D1,E1 coefficient C,D,E in above equation




5.1.14 Subroutine SKPB2(XA,YA,XE,YE,THA, THE,B1,C1,01,E1)

This subroutine computes the equation for a skewed parabola defined by two
points and their tangents. The equation for a skewed parabola is

(BXY)2+ CX+DY+E=0

Subroutine SKPB1 and the secant method are used to solve for the axis angle
that gives rise to the given exit 1ip angle.

Calling sequence:

XA, YA coordinate of attachment point
XE,YE coordinate of exit lip point
THA attachment angle

THE exit 1ip angle

B1,Cl1, coefficients B, C, D and E
D1,El in above equation



5.1.15 SUBRQUTINE SLP (X, Y, N, MFLAG, YP, W1, W2, W3, IFLAG)

The purpose of thls subroutine is to supply derivatives for a tabulated
function. The end point derivatives may be specified or are calculated inter-
nally by parabolic interpolation. Interior point derivatives may be found by
a cublc spline fit procedure.

Calling Sequence:

X is a table of independent varlables, x1
Y is a table of the dependent variables, Y

N is the number of entries In each of the tables X, Y, and YP.
I=1, ...N

MFLAG this entry Is a flag, m, such